大学物理力学?物理力学专业主要包括理论力学、材料力学、流体力学、热力学等。一、理论力学 理论力学是物理学的一个分支,主要研究物体在力的作用下的运动规律。它包括质点运动学、刚体运动学、动力学和静力学等方面。理论力学的研究方法主要是数学分析,通过建立物体运动的微分方程来描述物体的运动状态。那么,大学物理力学?一起来了解一下吧。
力(常见的力、力的合成与分解)
1)常见的力
1.重力G=mg
(方向竖直向下,g=9.8m/s2≈10m/s2,作用点在重心,适用于地球表面附近)
2.胡克定律F=kx
{方向沿恢复形变方向,k:劲度系数(N/m),x:形变量(m)}
3.滑动摩擦力F=μFN
{与物体相对运动方向相反,μ:摩擦因数,FN:正压力(N)}
4.静摩擦力0≤f静≤fm
(与物体相对运动趋势方向相反,fm为最大静摩擦力)
5.万有引力F=Gm1m2/r2
(G=6.67×10-11N•m2/kg2,方向在它们的连线上)
6.静电力F=kQ1Q2/r2
(k=9.0×109N•m2/C2,方向在它们的连线上)
7.电场力F=Eq
(E:场强N/C,q:电量C,正电荷受的电场力与场强方向相同)
8.安培力F=BILsinθ
(θ为B与L的夹角,当L⊥B时:F=BIL,B//L时:F=0)
9.洛仑兹力f=qVBsinθ
(θ为B与V的夹角,当V⊥B时:f=qVB,V//B时:f=0)
注:
(1)劲度系数k由弹簧自身决定;
(2)摩擦因数μ与压力大小及接触面积大小无关,由接触面材料特性与表面状况等决定;
(3)fm略大于μFN,一般视为fm≈μFN;
(4)其它相关内容:静摩擦力(大小、方向)〔见第一册P8〕;
(5)物理量符号及单位B:磁感强度(T),L:有效长度(m),I:电流强度(A),V:带电粒子速度(m/s),q:带电粒子(带电体)电量(C);
(6)安培力与洛仑兹力方向均用左手定则判定。
物理量(单位) 公式 备注 公式的变形
速度V(m/S) v= S:路程/t:时间
重力G (N) G=mg m:质量
g:9.8N/kg或者10N/kg
密度ρ (kg/m3) ρ= m/v
m:质量
V:体积
合力F合 (N) 方向相同:F合=F1+F2
方向相反:F合=F1-F2 方向相反时,F1>F2
浮力F浮 (N) F浮=G物-G视 G视:物体在液体的重力
浮力F浮 (N) F浮=G物
此公式只适用 物体漂浮或悬浮
浮力F浮 (N) F浮=G排=m排g=ρ液gV排
G排:排开液体的重力
m排:排开液体的质量
ρ液:液体的密度
V排:排开液体的体积 (即浸入液体中的体积)
杠杆的平衡条件 F1L1= F2L2 F1:动力 L1:动力臂
F2:阻力 L2:阻力臂
定滑轮 F=G物
S=h F:绳子自由端受到的拉力
G物:物体的重力
S:绳子自由端移动的距离
h:物体升高的距离
动滑轮 F= (G物+G轮)/2
S=2 h G物:物体的重力
G轮:动滑轮的重力
滑轮组 F= (G物+G轮)
S=n h n:通过动滑轮绳子的段数
机械功W (J) W=Fs
F:力
s:在力的方向上移动的距离
有用功W有 =G物h
总功W总 W总=Fs 适用滑轮组竖直放置时
机械效率 η=W有/W总 ×100%
功率P (w) P= w/t
W:功
t:时间
压强p (Pa) P= F/s
F:压力
S:受力面积
液体压强p (Pa) P=ρgh
ρ:液体的密度
h:深度(从液面到所求点的竖直距离)
热量Q (J) Q=cm△t
c:物质的比热容
m:质量
△t:温度的变化值
燃料燃烧放出
的热量Q(J) Q=mq m:质量
q:热值
大学物理C学力学、热学、电磁学、光学、原子物理学、相对论、量子力学、核物理学等。
1、力学
力学是物理学的一个分支,研究物体在力的作用下的运动和相互作用。它涵盖了力、质量、速度、加速度等概念,并基于牛顿三大定律建立了经典力学。力学包括静力学、运动学和动力学三个主要领域。
静力学研究物体在力的平衡状态下的静止或稳定;运动学关注物体的位置、速度和加速度之间的关系;而动力学则考察力对物体运动状态的影响。力学在工程、天文学、航空航天等领域有着广泛应用,为理解自然现象提供了基础理论。
2、热学
热学是物理学的一个分支,研究物质的热力学性质和热传导现象。它涉及到能量转换、热平衡和热流动等方面的内容。热学的基本概念包括温度、热量和热容等。
通过这些概念可以描述物质中的能量变化和传递过程。热学在工程学、天气预报、能源利用以及材料科学等领域都有广泛应用,帮助理解和控制热力学系统的行为。
3、电磁学
电磁学是研究电荷和电磁场之间相互作用的学科。它包括静电学、电流学、电磁感应和电磁波等内容。
4、光学
光学是研究光的传播、反射、折射和干涉等现象的学科。它涉及到光的特性、成像和光学仪器等方面的知识。
物理力学专业主要包括理论力学、材料力学、流体力学、热力学等。
一、理论力学
理论力学是物理学的一个分支,主要研究物体在力的作用下的运动规律。它包括质点运动学、刚体运动学、动力学和静力学等方面。理论力学的研究方法主要是数学分析,通过建立物体运动的微分方程来描述物体的运动状态。
理论力学为其他力学学科提供了基本的理论基础,如材料力学、流体力学等。
二、材料力学
材料力学是研究材料在外力作用下的变形、破坏和失效规律的学科。它主要研究材料的弹性、塑性、蠕变、疲劳等性质,以及材料的应力、应变、断裂强度等性能指标。
材料力学的研究方法主要是实验和数值模拟,通过对材料的试验和计算来揭示材料的内部结构和性能。材料力学在工程实践中具有广泛的应用,如建筑结构、桥梁设计、机械零件等。
三、流体力学
流体力学是研究流体(液体和气体)在力的作用下的运动规律的学科。它主要研究流体的静力学、动力学、粘性、湍流等方面。
流体力学的研究方法主要是数学分析,通过建立流体运动的微分方程来描述流体的运动状态。流体力学在工程实践中具有广泛的应用,如航空航天、船舶制造、水利工程等。
四、热力学
热力学是研究热量与其他能量形式之间相互转换和守恒规律的学科。
大学物理力学公式如下:
1、动量矩定理:F=ma(合外力提供物体的加速度);
2、动能定理:W=1/2mV^2-1/2mv^2(合外力做的功等于物体的动能的改变量);
3、动量定理:Ft=mV-mv(合外力的冲量等于物体动量的变化量)。
从牛顿运动微分方程组推导出来的具有明显物理意义的定理,计有动量定理、动量矩定理、动能定理、质心运动定理等四个。
动力学的基本内容
质点动力学、质点系动力学、刚体动力学,达朗伯原理等。以动力学为基础而发展出来的应用学科有天体力学、振动理论、运动稳定性理论、陀螺力学、外弹道学、变质量力学以及正在发展中的多刚体系统动力学等(见振动,运动稳定性,变质量体运动,多刚体系统)。
质点动力学有两类基本问题:一是已知貭点的运动,求作用于质点上的力,二是已知作用于质点上的力,求质点的运动,求解第一类问题时只要对质点的运动方程取二阶导数,得到质点的加速度,代入牛顿第二定律,即可求得力。
扩展资料:
应用范围
它在许多场合非常准确。经典力学可用于描述人体尺寸物体的运动(如陀螺和棒球),许多天体(如行星和星系)的运动,以及一些微尺度物体(如有机分子)。
在低速运动的物体中,经典力学非常实用,虽然爱因斯坦提出了相对论,但是在生活中,我们几乎不会遇见高速运动(光速级别),因此,我们还是会以经典力学解释各种现象。
以上就是大学物理力学的全部内容,大学物理力学公式如下:1、动量矩定理:F=ma(合外力提供物体的加速度);2、动能定理:W=1/2mV^2-1/2mv^2(合外力做的功等于物体的动能的改变量);3、动量定理:Ft=mV-mv(合外力的冲量等于物体动量的变化量)。从牛顿运动微分方程组推导出来的具有明显物理意义的定理,计有动量定理、。