当前位置: 首页 > 所有学科 > 历史

函数的历史,函数的近代定义

  • 历史
  • 2024-06-28

函数的历史?函数概念的发展历史 1.早期函数概念——几何观念下的函数 十七世纪伽俐略(G.Galileo,意,1564-1642)在《两门新科学》一书中,几乎全部包含函数或称为变量关系的这一概念,用文字和比例的语言表达函数的关系。那么,函数的历史?一起来了解一下吧。

函数的发展史介绍

1、 伽利略(1564-1642)的落体运动定律、牛顿(1642-1727)的万有引力定律、爱因斯坦(1879-1955)的质能转化公式等等都是用函数概念来表达的。 2、 函数概念最早出现在J葛列格里(1638-1675)的文章《论元和双曲线的求积》中。在费马(1601-1665)、笛卡尔(1596-1650)的工作中也涉及到这些概念。牛顿开始微积分工作后,一直用“流量”来表示变量间的关系。莱布尼兹(1646-1716)在1673年的一篇手稿里面用了“函数”一词。3、 用符号Φx表示一般函数的是瑞士数学家约翰•伯努利(一世)(1667-1748)。1734年欧拉(1707-1783)采纳这一定义用f(x)作为函数的记号。该用法一直保持到今天。1769年,达朗贝尔(1717-1783)第一次导出了函数方程f(x+y)+f(x-y)=2f(x)f(y)。柯西(1789-1857)在1821年导入了更多的函数方程:f(x+y)=f(x)f(y),f(xy)=f(x)+f(y),f(xy)=f(x)f(y)。一系列重要的函数方程由阿贝尔(1802-1827)年解决。 4、 傅里叶(1768-1830)引入三角级数,例如:y=sinx/1+sin(3x)/3+sin(5x)/5+┅。

函数发展时间轴

1.早期历史

函数概念的早期演变过程为:开始,x的函数仅只x的幂;接着,其涵义被拓广为含x的代数式;之后,又从代数式拓广到含x的任意解析式;最后,从任意解析式拓广为依赖于x或由x所确定的任意变量。同时,一元函数又被拓广到了多元函数。

2.从约翰·伯努利到欧拉

1694年,约翰·伯努利提到函数是“由不定的量和常量所构成的某个量”。1718年,他首次明确提出函数的新定义:“一个变量的函数是由该变量和一些常量以任何方式组成的量。”

欧拉在约翰·伯努利的定义基础之上,在《无穷分析引论》中首次用解析式来定义函数:“一个变量的函数是由该变量和一些数或常量以任何方式组成的解析式。”

1755年,欧拉在《微分基础》中更新了函数的定义:“如果某些量依赖于另一些量,当后面这些量变化时,前面这些变量也随之变化,则前面的量称为后面的量的函数。”

欧拉的“解析式”定义和“依赖关系”定义对后世产生了深远的影响,19世纪中叶以前,它们一直是函数定义的蓝本。

3.百科全书中的函数定义

1757~1838年的欧美百科全书或数学词典中,函数的解析式定义占有绝对统治地位。虽然欧拉已经定义了“代数函数”和“超越函数”,但各百科全书的有关作者并没有相应的区分“代数式”和“超越式”,将“代数式”与一般“解析式”混为一谈。

函数的“前世今生”概念

(一)

?马克思曾经认为,函数概念来源于代数学中不定方程的研究.由于罗马时代的丢番图对不定方程已有相当研究,所以函数概念至少在那时已经萌芽.

?自哥白尼的天文学革命以后,运动就成了文艺复兴时期科学家共同感兴趣的问题,人们在思索:既然地球不是宇宙中心,它本身又有自转和公转,那么下降的物体为什么不发生偏斜而还要垂直下落到地球上?行星运行的轨道是椭圆,原理是什么?还有,研究在地球表面上抛射物体的路线、射程和所能达到的高度,以及炮弹速度对于高度和射程的影响等问题,既是科学家的力图解决的问题,也是军事家要求解决的问题,函数概念就是从运动的研究中引申出的一个数学概念,这是函数概念的力学来源.

(二)

?早在函数概念尚未明确提出以前,数学家已经接触并研究了不少具体的函数,比如对数函数、三角函数、双曲函数等等.1673年前后笛卡儿在他的解析几何中,已经注意到了一个变量对于另一个变量的依赖关系,但由于当时尚未意识到需要提炼一般的函数概念,因此直到17世纪后期牛顿、莱布尼兹建立微积分的时候,数学家还没有明确函数的一般意义.

?1673年,莱布尼兹首次使用函数一词表示“幂”,后来他用该词表示曲线上点的横坐标、纵坐标、切线长等曲线上点的有关几何量.由此可以看出,函数一词最初的数学含义是相当广泛而较为模糊的,几乎与此同时,牛顿在微积分的讨论中,使用另一名词“流量”来表示变量间的关系,直到1689年,瑞士数学家约翰·贝努里才在莱布尼兹函数概念的基础上,对函数概念进行了明确定义,贝努里把变量x和常量按任何方式构成的量叫“x的函数”,表示为yx.

?当时,由于连接变数与常数的运算主要是算术运算、三角运算、指数运算和对数运算,所以后来欧拉就索性把用这些运算连接变数x和常数c而成的式子,取名为解析函数,还将它分成了“代数函数”与“超越函数”.

?18世纪中叶,由于研究弦振动问题,达朗贝尔与欧拉先后引出了“任意的函数”的说法.在解释“任意的函数”概念的时候,达朗贝尔说是指“任意的解析式”,而欧拉则认为是“任意画出的一条曲线”.现在看来这都是函数的表达方式,是函数概念的外延.

(三)

?函数概念缺乏科学的定义,引起了理论与实践的尖锐矛盾.例如,偏微分方程在工程技术中有广泛应用,但由于没有函数的科学定义,就极大地限制了偏微分方程理论的建立.1833年至1834年,高斯开始把注意力转向物理学.他在和W·威伯尔合作发明电报的过程中,做了许多关于磁的实验工作,提出了“力与距离的平方成反比例”这个重要的理论,使得函数作为数学的一个独立分支而出现了,实际的需要促使人们对函数的定义进一步研究.

?后来,人们又给出了这样的定义:如果一个量依赖着另一个量,当后一量变化时前一量也随着变化,那么第一个量称为第二个量的函数.“这个定义虽然还没有道出函数的本质,但却把变化、运动注入到函数定义中去,是可喜的进步.”

?在函数概念发展史上,法国数学家富里埃的工作影响最大,富里埃深刻地揭示了函数的本质,主张函数不必局限于解析表达式.1822年,他在名著《热的解析理论》中说,“通常,函数表示相接的一组值或纵坐标,它们中的每一个都是任意的……,我们不假定这些纵坐标服从一个共同的规律;他们以任何方式一个挨一个.”在该书中,他用一个三角级数和的形式表达了一个由不连续的“线”所给出的函数.更确切地说就是,任意一个以2π为周期函数,在〔-π,π〕区间内,可以由

?表示出,其中

?富里埃的研究,从根本上动摇了旧的关于函数概念的传统思想,在当时的数学界引起了很大的震动.原来,在解析式和曲线之间并不存在不可逾越的鸿沟,级数把解析式和曲线沟通了,那种视函数为解析式的观点终于成为揭示函数关系的巨大障碍.

?通过一场争论,产生了罗巴切夫斯基和狄里克莱的函数定义.

?1834年,俄国数学家罗巴切夫斯基提出函数的定义:“x的函数是这样的一个数,它对于每个x都有确定的值,并且随着x一起变化.函数值可以由解析式给出,也可以由一个条件给出,这个条件提供了一种寻求全部对应值的方法.函数的这种依赖关系可以存在,但仍然是未知的.”这个定义建立了变量与函数之间的对应关系,是对函数概念的一个重大发展,因为“对应”是函数概念的一种本质属性与核心部分.

?1837年,德国数学家狄里克莱(Dirichlet)认为怎样去建立x与y之间的关系无关紧要,所以他的定义是:“如果对于x的每一值,y总有完全确定的值与之对应,则y是x的函数.”

?根据这个定义,即使像如下表述的,它仍然被说成是函数(狄里克莱函数):

f(x)= 1?(x为有理数),

0?(x为无理数).

?在这个函数中,如果x由0逐渐增大地取值,则f(x)忽0忽1.在无论怎样小的区间里,f(x)无限止地忽0忽1.因此,它难用一个或几个式子来加以表示,甚至究竟能否找出表达式也是一个问题.但是不管其能否用表达式表示,在狄里克莱的定义下,这个f(x)仍是一个函数.

?狄里克莱的函数定义,出色地避免了以往函数定义中所有的关于依赖关系的描述,以完全清晰的方式为所有数学家无条件地接受.至此,我们已可以说,函数概念、函数的本质定义已经形成,这就是人们常说的经典函数定义.

(四)

?生产实践和科学实验的进一步发展,又引起函数概念新的尖锐矛盾,本世纪20年代,人类开始研究微观物理现象.1930年量子力学问世了,在量子力学中需要用到一种新的函数——δ-函数,

即?ρ(x)= 0,x≠0,

∞,x=0.

?δ-函数的出现,引起了人们的激烈争论.按照函数原来的定义,只允许数与数之间建立对应关系,而没有把“∞”作为数.另外,对于自变量只有一个点不为零的函数,其积分值却不等于零,这也是不可想象的.然而,δ-函数确实是实际模型的抽象.例如,当汽车、火车通过桥梁时,自然对桥梁产生压力.从理论上讲,车辆的轮子和桥面的接触点只有一个,设车辆对轨道、桥面的压力为一单位,这时在接触点x=0处的压强是

?P(0)=压力/接触面=1/0=∞.

?其余点x≠0处,因无压力,故无压强,即?P(x)=0.另外,我们知道压强函数的积分等于压力,即

?函数概念就在这样的历史条件下能动地向前发展,产生了新的现代函数定义:若对集合M的任意元素x,总有集合N确定的元素y与之对应,则称在集合M上定义一个函数,记为y=f(x).元素x称为自变元,元素y称为因变元.

?函数的现代定义与经典定义从形式上看虽然只相差几个字,但却是概念上的重大发展,是数学发展道路上的重大转折,近代的泛函分析可以作为这种转折的标志,它研究的是一般集合上的函数关系.

?函数概念的定义经过二百多年来的锤炼、变革,形成了函数的现代定义,应该说已经相当完善了.不过数学的发展是无止境的,函数现代定义的形式并不意味着函数概念发展的历史终结,近二十年来,数学家们又把函数归结为一种更广泛的概念—“关系”.

?设集合X、Y,我们定义X与Y的积集X×Y为

?X×Y={(x,y)|x∈X,y∈Y}.

?积集X×Y中的一子集R称为X与Y的一个关系,若(x,y)∈R,则称x与y有关系R,记为xRy.若(x,y)R,则称x与y无关系.

?现设f是X与Y的关系,即fX×Y,如果(x,y),(x,z)∈f,必有y=z,那么称f为X到Y的函数.在此定义中,已在形式上回避了“对应”的术语,全部使用集合论的语言了.

?从以上函数概念发展的全过程中,我们体会到,联系实际、联系大量数学素材,研究、发掘、拓广数学概念的内涵是何等重要.

函数的形成与发展文献综述

函数是数学的重要的基础概念之一。进一步学习的

,包括

、微分学、积分学、

乃至

等高等学校开设的

课程,无一不是以函数作为基本概念和研究对象的。其他学科如物理学等学科也是以函数的基础知识作为研究问题和解决问题的工具。函数的教学内容蕴涵着极其丰富的辩证思想,是对学生进行

观点教育的好素材。函数的思想方法也广泛地诊透到中学数学的全过程和其他学科中。

函数是中学数学的主体内容。它与中学数学很多内容都密切相关,初中代数中的“函数及其图象”就属于函数的内容,

中的

是函数内容的主体,通过这些函数的研究,能够认识函数的性质、图象及其初步的应用。后续内容的极限、

初步知识等都是函数的内容。数列可以看作整标函数,等差数列的通项反映的点对(n,an)都分布在直线y=kx+b的图象上,等差数列的前n项和公式也可以看作关于的

关系式,

的内容也都属于

类型的整标函数。中学的其他数学内容也都与函数内容有关。

函数在中学教材中是分三个阶段安排的。第一阶段是在初中代数课本内初步讨论了函数的概念、函数的表示方法以及函数图象的绘制等,并具体地讨论

等最简单的函数,通过计算函数值、研究

的慨念和性质,理解函数的概念,并用描点法可以绘制相应函数图象。

函数的来源与发展

现行数学教科书上使用的“函数”一词是转译词.是我国清代数学家李善兰在翻译《代数学》(1895年)一书时,把“function”译成函数的.中国古代“函”字与“含”字通用,都有着“包含”的意思,李善兰给出的定义是:“凡式中含天,为天之函数.”中国古代用天、地、人、物4个字来表示4个不同的未知数或变量.这个定义的含义是:“凡是公式中含有变量 ,则该式子叫做 的函数.”所以“函数”是指公式里含有变量的意思.对函数一次的介绍既要用到古汉语知识,还涉及到英语、历史的相关知识。

以上就是函数的历史的全部内容,函数概念的定义经过三百多年的锤炼、变革,形成了函数的现代定义形式,但这并不意味着函数概念发展的历史终结,20世纪40年代,物理学研究的需要发现了一种叫做Dirac-δ函数,它只在一点处不为零,而它在全直线上的积分却等于1,这在原来的函数和积分的定义下是不可思议的,但由于广义函数概念的引入,把函数、。

猜你喜欢