当前位置: 首页 > 所有学科 > 物理

旋度的物理意义,磁矢位的物理意义

  • 物理
  • 2024-09-12

旋度的物理意义?旋度的物理意义是设想将闭合曲线缩小到其内某一点附近,那么以闭合曲线L为界的面积也将逐渐减小。一般说来,这两者的比值有一极限值,即记作单位面积平均环流的极限。它与闭合曲线的形状无关,但显然依赖于以闭合曲线为界的面积法线方向且通常L的正方向与规定要构成右手螺旋法则。那么,旋度的物理意义?一起来了解一下吧。

斯托克斯定理的物理意义

定义向量场的旋度,首先要引入环量(或称为旋涡量)的概念。给定一个三维空间中的向量场以及一个简单闭合有向(平面)曲线 ,沿着曲线的环量就是沿着路径的闭合曲线积分:

其中曲线上的线元,方向是曲线的切线方向,其正方向规定为使得闭合曲线所包围的面积在它的左侧。举例来说,假如在河岸边看到河中有逆时针旋转的漩涡,那么在漩涡范围内,水流围绕涡心旋转,所以水流速度沿着逆时针围绕漩涡的闭合曲线积分一定大于零,即是说环量大于零。这说明漩涡中的水流流速场在漩涡范围内是转圈旋转的。

环量和通量一样,是描述向量场的重要参数。某个区域中的环量不等于零,说明这个区域中的向量场表圆孝现迟物出环绕某一点或某一区域旋转的特性。旋度则是局部地描述这一特性的方法。为了描述一个向量场在一点附近的环量,将闭合曲线收小,使它包围的面元的面积趋于零。向量场沿着 的环量和面元的比值在趋于零时候的极限值:

就是的环量面密度(或称为环量强度)。显然,随着面积取的方向不同,得到的环量面密度也有大有小。如果要表现一点附近向量场的旋转程度,则应该表现出其最大可能值以及其所在面积的方向。而向量场的旋度是一个向量。它在一个方向上的投影的大小表示了在这个方向上的环量橘旦稿面密度的大小。

旋度的物理意义电磁场

如何旋度公式 的理解 书 知乎

旋度是向量分析中的一个向量算子,可以表示三维向量场对某一点附近的微元造成的旋转程度。 这个向量提供了向量场在这一点的旋转性质。

旋度的例子

下面是两个简单的例子,用以说明旋度的直观意义。第一个例子是向量场 (如图1):直观上,可以看出向量场是表示一个向顺时针方向旋转的趋势。假如在图中放一个点,它会被向量场“推动”,沿顺时针方向绕圈运动。根据右手定则,旋度的方向应该是朝向页面内。按照右手系座标的方向,旋度的方向是 轴的负方向。经过计算可以得出,向量场的旋度为和直观的推断相符合。以上的计算表明,对于该矢量场,旋度是一个恒定的量,也就是说,每好稿一点上旋转的程度都配袜前是一样的。旋度图象为图2:第二个例子是向量场 (如右图3):向量场的作用是向下,越是靠近两侧,向下的趋势越显著。假想这个向量场是一个力场,一块薄板水平放在图的右边,那么由于更靠右的地方受到向下的力更大,薄板会顺时针转动。类似地,如果将薄板水平放在图的左边,则会逆时针转动。所以的旋转作用是右侧顺时针、左侧逆时针,而且越偏离中心,作用越大。按照右手定则,旋度应该是右侧朝 轴负方向(指向页面内),左侧朝 轴正方向(指向页面外)。

散度和旋度通俗的理解

问题一:流场中速度的散度和旋度分别表示什么物理意义散度是闭合曲面围成空间中的通量除以围成空间体积,然后令曲面无限小。

旋度是闭合曲线围成面积中的环流除以围成范围面积,然后令曲线无限小

给个直观点的。

散度:曲面范围内,如果场线(比如电场线和磁场线)穿过范围内进出量不一样,那这个场在这个点就是有散度的。直观讲,以电场为例,如果备指这个点包围了一个电子(当然电子有一定的体积,可能让曲面无穷小时仍被包尾,这里只是打个比方),那么肯定是个有源场,有电场线穿入范围,而没有电场线穿出,散度不为零。

旋度:换一条闭合曲线,如果场沿曲线做积分不为零,说明这个面积内旋度不为零。积分是不是不好理解?这么说,沿着曲线一点一点叠加场量,场量和曲线同向就取正,反向就取负。因为曲线是闭合的,所以如果叠加出来不为零,说明沿曲线转了一圈的方向,场叠加也不为零。

最极端的例子,我们的闭合曲线取正圆,包围了一个通电导线,导线周围的磁场也是一个正圆,那么正圆磁场沿着正圆曲线一点一点叠加一圈(因为都是同向或反向)肯定不为零,所以这就是一个有旋场。

问题二:那我们为什么还要加入世界贸易组织呢,怎么加入了这个组织,贸易摩擦反而多了呢?其实只是现在关于贸易摩擦的报道多起来了,而不是现在的贸易摩擦多起来了。

磁矢位的物理意义

散度的概念

div F=▽·F 在矢量场F中的任一点M处作一个包围该点的任意闭合曲面S,当S所限定的体积ΔV以任何方式趋近于0时,则比值∮F·dS/ΔV的极限称为矢量场F在点M处的散度,并记作div F

由散度源袜悉梁的定义可知,div F表示在点M处的单位体积内散发出来的矢量F的通量,所以div F描述了通量源的密度。

散度的重要性在于,可用表征空间各点矢量场发散的强弱程度,当div F>0 ,表示该点有散发通量的正源;当div F<0 表示该点有吸收通量的负源;当div =0,表示该点为无源场。

静电场的散度不为零、旋度为零,表明了它是有源无旋场。 静磁场的散度为零、旋度不为零,表明了他是有旋无源场。

散度可以表示流体运动时单位体积的改变率

旋度的物理意义

设想将闭合曲线缩小到其内某一点附近,那么以闭合曲线L为界的面积也将逐渐减小.一般说来,这两者的比值有一极限值,记作即单位面积平均环流的极限。它与闭合曲线的形状无关,但显然依赖于以闭合曲线为界的面积法线方向且通常L的正方向与规定要构成右手雹陆激螺旋法则,旋度的重要性在于,可用通过研究表征矢量在某点附近各方向上环流强弱的程度,进而得到其单位面积平均环流的极限的大小程度。

磁场的散度恒等于0

该物理意义如下:

“旋度”的物理意义是设想将闭合曲线缩小到其内某一点附近,那么以闭合曲线L为界的面积也将逐渐减小。一般说来,这两者的比值有一极限值,即记作单位面积平均环流的极限。它与闭合曲线的形状无关,但显然依赖于以闭合曲线为界的面积法线方向且通常L的正方向与规定要构成右手螺旋法则。

旋度的重要性在于,可用通过研究表征矢量在某点附近各方向上环流强弱的程度,进而得到其单位面积平均环流的极限的大小程度。磁场是有旋场,静电场是无旋场。

以上就是旋度的物理意义的全部内容,1、旋度的物理意义是描述向量场在每一点的旋转性质。具体来说,旋度向量的方向表示向量场在这一点附近旋转度最大的环量的旋转轴,它和向量旋转的方向满足右手定则。旋度向量的大小则是绕着这个旋转轴旋转的环量与旋转路径围成的面元的面积之比。2、在物理中,旋度可以用来描述各种具有旋转特性的现象。

猜你喜欢