当前位置: 首页 > 所有学科 > 数学

数学七年级上册知识点,数学七年级上册教学

  • 数学
  • 2024-02-02

数学七年级上册知识点?一.正数和负数 ⒈正数和负数的概念 负数:比0小的数 正数:比0大的数 0既不是正数,也不是负数 注意:①字母a可以表示任意数,当a表示正数时,-a是负数;当a表示负数时,-a是正数;当a表示0时,-a仍是0。那么,数学七年级上册知识点?一起来了解一下吧。

七年级数学知识点归纳上册

初一上册数学知识点:1、数轴:数轴三要素:原点,正方向和单位长度;数轴上的点与实数是一一对应的。2、相反数:实数a的相反数是-a;若a与b互为相反数,则有a+b=0,反之亦然;几何意义:在数轴上,表示相反数的两个点位于原点的两侧,并且到原点的距离相等。

初一上册数学知识点总结

一、代数式的定义:

用运算符号把数或表示数的字母连结而成的式子,叫做代数式。单独的一个数或字母也是代数式。

注意:(1)单个数字与字母也是代数式;(2)代数式与公式、等式的区别是代数式中不含等号,而公式和等式中都含有等号;(3)代数式可按运算关系和运算结果两种情况理解。

三、整式:单项式与多项式统称为整式。

1.单项式:数与字母的积所表示的代数式叫做单项式,单项式中的数字因数叫做单项式的系数;单项式中所有字母的指数的和叫做单项式的次数。特别地,单独一个数或者一个字母也是单项式。

2.多项式:几个单项式的和叫做多项式,在多项式中,每个单项式叫做多项式的项,其中不含字母的项叫做常数项;在多项式里,次数最高项的次数就是这个多项式的次数。

四、升(降)幂排列:

把一个多项式按某一个字母的指数从小到大(或从大到小)的顺序排列起来,叫做把多项式按这个字母升(降)幂排列。

初一上册几何知识点总结

学习是每个一个学生的职责,而学习的动力是靠自己的梦想,也可以这样说没有自己的梦想就是对自己的一种不责任的表现,也就和人失走肉没啥两样,只是改变命运,同时知识也不是也不是随意的摘取。要通过自己的努力,要把我自己生命的钥匙。以下是我为您整理的七年级上册数学知识点总结三篇,供大家学习参考。

七年级上册数学知识点总结篇一

单项式与多项式

1、没有加减运算的整式叫做单项式。(数字与字母的积---包括单独的一个数或字母)

2、几个单项式的和,叫做多项式。其中每个单项式叫做多项式的项,不含字母的项叫做常数项。

说明:①根据除式中有否字母,将整式和分式区别开;根据整式中有否加减运算,把单项式、多项式区分开。②进行代数式分类时,是以所给的代数式为对象,而非以变形后的代数式为对象。划分代数式类别时,是从外形来看。

单项式

1、都是数字与字母的乘积的代数式叫做单项式。

2、单项式的数字因数叫做单项式的系数。

3、单项式中所有字母的指数和叫做单项式的次数。

4、单独一个数或一个字母也是单项式。

5、只含有字母因式的单项式的系数是1或―1。

初一数学上册全部内容

一个没有几分诗人气的数学家永远成不了一个完全的数学家.下面给大家带来一些关于七年级数学上册知识点汇总,希望对大家有所帮助。

1、有理数减法法则:减去一个数等于加上这个数的相反数,即:a-b=a+(-b).

2、加减法统一成加法:有理数的加减法运算可以通过有理数的减法法则将减法转化为加法,统一成只有加法运算的和式.

3、和式的写法:在和式里,通常把各个加数的括号和它前面的加号省略不写,写成省略加

号的和的形式.

4、加减混合运算的方法和步骤

(1)将减法统一成加法,并写成省略加号的和的形式;

(2)运用加法的交换律和结合律,简化运算.

5、有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数与零相乘,都得0.

6、有理数乘法步骤:先确定积的符号;再计算绝对值的积.

7、倒数:乘积是1的两个数互为倒数.

8、有理数的除法法则

(1)除以一个数等于乘以这个数的倒数;

(2)两数相除,同号得正,异号得负,并把绝对值相除;

(3)0除以任何一个不等于零的数,都得0.

9、乘方的有关概念

(1)求n个相同因数的积的运算叫乘方,乘方的结果叫幂,a叫底,n叫指数,a n读作:a的n 次方(或a的n次幂).

(2)正数的任何次幂都是正数;负数的奇次方幂是负数,偶次方幂是正数.

10、科学计数法

把一个大于10的数记成a×10n的形式,其中0≤a<10,n是正数,这种计数法叫做科学计数法.

11、有理数的混合运算顺序

(1)先算乘方,再算乘除,最后算加减;

(2)同级运算,按照从左至右的顺序依次进行;

(3)如果有括号,就先算小括号,再算中括号,然后算大括号.

12、近似数:与实际很接近的数.

13、精确度:反映近似数的精确程度的量.一般地,一个近似数四舍五入到某一位,就说这个

近似数精确到那一位.

14、计算器的组成:计算器的面板由显示器和按键组成.

第3章整式的加减

1、用字母表示数后,有些数量之间的关系用含有字母的式子表示,看上去更加简明,更具有普

遍意义.

2、用字母表示数后,字母的取值要根据实际情景来确定.

3、用运算符号把数或表示数的字母连接而成的式子,称为代数式.

4、单独一个数或单独一个字母也是代数式.

5、列代数式的实质就是把文字语言转化为符号语言.

6、列代数式的一般方法有:

(1)抓住关键词,由关键词确定相应的运算符号;

(2)理清运算顺序,一般是先读的先算,必要时添上括号;

(3)较复杂的数量关系,可分段处理;

(4)根据实际问题中的基本数量关系或公式列代数式.

7、用数值代替代数式中的字母,按照代数式中的运算关系计算得出结果,叫做代数式的值.

8、求代数式的值的步骤:先代入,再求值.

9、数与字母的乘积所组成的代数式叫做单项式,单独的数或字母也是单项式.

10、单项式中的数字因数叫做这个单项式的系数,所有字母指数之和叫做这个单项式的次数.

11、几个单项式的和叫做多项式,在多项式中,每个单项式叫做多项式的项,其中不含字母

的项叫做常数项.

12、在多项式里,最高次项的次数就是这个多项式的次数.

13、单项式和多项式统称为整式.

14、把一个多项式按某一个字母的指数从大到小的顺序排列起来,叫做把这个多项式按这个

字母的降幂排列.

15、把一个多项式按某一个字母的指数从小到大的顺序排列起来,叫做把这个多项式按这个

字母的升幂排列.

16、所含字母相同,并且相同字母的指数也相等的项叫做同类项,所有的常数项都是同类项.

17、把多项式中的同类项合并成一项,叫做合并同类项.

18、合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变.

19、去括号法则:

(1)括号前面是“+”,把括号和它前面的“+”号去掉,括号里各项不改变正负号;

(2)括号前面是“—”,把括号和它前面的“—”号去掉,括号里各项改变正负号;

20、添括号法则:

(1)所添括号前面是“+”号,括到括号里的各项不改变正负号;

(2)所添括号前面是“—”号,括到括号里的各项改变正负号;

21、整式加减的一般步骤:先去括号,再合并同类项.

第4章生活中的立体图形

1、生活中的立体图形有很多,常见的有柱体、锥体和球体,其中柱体分为圆柱和棱柱,锥体分

为圆锥和棱锥

2、从正面、上面和侧面(左面或右面)三个不同的方向看一个物体,然后描绘出三幅所看到的

图,即视图.

3、从正面看到的图形,称为主视图;从上面看到的图形,称为俯视图;从侧面看到的图形,称

为侧视图,依观看的方向不同,有左视图和右视图.

4、单一的规则的立体图形的三视图,如果主视图和侧视图是三角形,一般和锥体有关,可根据

俯视图是圆形或n边形,可以判断是圆锥或,n棱锥;对于主视图和侧视图是长方形的,一般和柱体有关,再观察俯视图是圆形或n边形,可以判断是圆柱或n棱柱.

5、圆柱的侧面展开图是矩形(长方形或正方形),圆锥的侧面展开图是扇形.

6、同一个立体图形,按不同的方式展开得到的平面展开图是不同的.

7、圆是由曲面围成的封闭图形;多边形是由线段围成的封闭图形.

8、在多边形中,最基本的图形是三角形.

9、两点之间线段最短.

10、经过两点有1条直线,并且只有1条直线,即两点确定一条直线.

11、线段的长短比较有两种方法:一种是度量的方法;一种是叠合的方法.

12、把一条线段分成两条相等线段的点,叫做这条线段的中点.

13、角是由两条有公共端点的射线组成的图形,角也可以看做是一条射线绕着它的端点旋转

而成的图形.

14、角的表示方法

(1)当顶点处只有一个角时,用一个大写字母表示;

(2)用三个大写字母表示,注意顶点字母必须写在中间;

(3)用希腊字母或阿拉伯数字表示.

15、角的大小比较:

(1)“形的比较”——叠合法;

(2)“数的比较”——度量法.

16、从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的

角平分线.

17、两个角的和等于90°(直角),就说这两个角互为余角;两个角的和等于180°(平角),

就说这两个角互为补角.

18、同角(或等角)的余角相等;同角(或等角)的补角相等.

第5章相交线与平行线

1、对顶角相等.

2、在同一平面内,经过直线外或直线上一点,有且只有1条直线与已知直线垂直.

3、直线外一点与直线上各点连接的所有线段中,垂线段最短.

4、两条直线被第三条直线所截,位于截线的同侧,被截直线的同一方的两个角叫做同位角;位

于截线的两侧,被截直线之间的两个角叫做内错角;位于截线的同侧,被截直线之间的两个角叫做同旁内角.

5、在同一平面内不相交的两条直线叫做平行线.

6、经过直线外一点,有1条直线与这条直线平行.

7、如果两条直线都和第三条直线平行,那么这两条直线也互相平行.

8、平行线的判定方法

(1)同位角相等,两直线平行;

(2)内错角相等,两直线平行;

(3)同旁内角互补,两直线平行;

(4)如果有两条直线与第三条直线平行,那么这两条直线也互相平行;

(5)在同一平面内,垂直于同一条直线的两条直线互相平行.

9、平行线的性质

(1)两直线平行,同位角相等;

(2)两直线平行,内错角相等;

(3)两直线平行,同旁内角互补.

第1章走进数学世界

1、数学伴我们成长,测量、称重、计算等都与数学有关.

2、数学与现实生活密切联系,人类离不开数学.

3、人人都能学好数学.

第2章有理数

1、相反意义的量:像向东和向西、零上和零下、收入和支出、升高和降低、买入和卖出等都表

示具有相反意义的量.

2、正数和负数

(1)正数都大于零;

(2)在正数前面加上一个“—”号的数叫做负数,负数都小于零;

(3)0既不是正数也不是负数,它是正数和负数的分界点.

3、有理数

(4)有理数:正数和分数统称为有理数;

(5)整数包括正整数、0、负整数;

(6)分数包括正分数、负分数.

4、有理数的分类:0和正数统称为非负数,0和负数统称为非正数.

5、数轴的概念:规定了正方向、原点和单位长度的直线叫做数轴.

6、有理数的大小比较

(1)利用数轴:在数轴上表示两个数,右边的数总比左边的数大;

(2)利用比较法则:正数都大于零,负数都小于零,正数大于负数.

7、相反数的意义

(1)代数意义:只有符号不同的两个数称互为相反数,零的相反数是0;

(2)几何意义:在数轴上表示互为相反数的两个点分别位于原点的两侧,且与原点的距离相等.

8、相反数的表示方法:数a的相反数是-a,这里的a可以表示任何一个数.

9、绝对值的意义

(1)几何意义:把数轴上表示数a的点与原点的距离叫做数a的绝对值,记做|a|;

(2)代数意义:一个正数的绝对值等于本身,零的绝对值是0,一个负数的绝对值等于相反数.

10、绝对值的非负性:对于任何有理数a,都有|a|≥0.

11、两个负数的大小比较法则:两个负数,绝对值大的反而小.

12、有理数大小的比较方法

(1)利用数轴:在数轴上表示两个数,右边的数总比左边的数大;

(2)利用比较法则:正数都大于零,负数都小于零,正数大于负数.

两个正数,绝对值大的数大;两个负数绝对值大的数反而小.

13、有理数的加法法则

(1)同号两数相加,取加数的符号,并把绝对值相加;

(2)绝对值不相等的异号两数相加,取绝对值较大加数的符号,并用较大的绝对值减较小的绝对值;

(3)互为相反数的两个数相加得0;

(4)一个数同0相加仍得这个数.

14、在进行有理数的加法运算时,应分两步:首先,判断符号;然后,再计算绝对值.

15、有理数的加法运算律

(1)交换律:两个数相加,交换加数的位置,和不变,即:a+b=b+a;(用字母表示)

(2)结合律:三个数相加,先把前面两个数相加,或者先把后两个数相加,和不变,即:(a+b)+c=a+(b+c).(用字母表示)

16、运用加法运算律的技巧:正负结合;凑整结合;相反数结合;同分母结合;整分结合.

七年级数学上册知识点汇总相关文章:

★初一数学上册知识点归纳

★初一上册数学知识点归纳整理

★初一数学上册重点知识整理

★初一数学上册基本概念汇总与学习方法

★七年级上册数学知识点总结三篇

★七年级数学知识点整理大全

★初中七年级数学知识点归纳整理

★初一数学有理数知识点

★七年级上册数学全册概念总结复习

★初一年级上册数学的21个热门知识点

七年级数学上册知识点归纳

第一章 有理数

一.正数和负数

⒈正数和负数的概念

负数:比0小的数 正数:比0大的数 0既不是正数,也不是负数

注意:①字母a可以表示任意数,当a表示正数时,-a是负数;当a表示负数时,-a是正数;当a表示0时,-a仍是0。(如果出判断题为:带正号的数是正数,带负号的数是负数,这种说法是错误的,例如+a,-a就不能做出简单判断)

②正数有时也可以在前面加“+”,有时“+”省略不写。所以省略“+”的正数的符号是正号。

2.具有相反意义的量

若正数表示某种意义的量,则负数可以表示具有与该正数相反意义的量,比如:

零上8℃表示为:+8℃;零下8℃表示为:-8℃

支出与收入;增加与减少;盈利与亏损;北与南;东与西;涨与跌;增长与降低等等是相对相反量,它们计数: 比原先多了的数,增加增长了的数一般记为正数;相反,比原先少了的数,减少降低了的数一般记为负数。 3.0表示的意义

⑴0表示“ 没有”,如教室里有0个人,就是说教室里没有人;

⑵0是正数和负数的分界线,0既不是正数,也不是负数。

二.有理数

1.有理数的概念

⑴正整数、0、负整数统称为整数(0和正整数统称为自然数)

⑵正分数和负分数统称为分数

⑶正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。

初一数学60分还有救吗

1.七年级数学上册期末要点总结 篇一

一、代数初步知识。

1.代数式:用运算符号“+-×÷……”连接数及表示数的字母的式子称为代数式(字母所取得数应保证它所在的式子有意义,其次字母所取得数还应使实际生活或生产有意义;单独一个数或一个字母也是代数式)

2.列代数式的几个注意事项:

(1)数与字母相乘,或字母与字母相乘通常使用“·”乘,或省略不写;

(2)数与数相乘,仍应使用“×”乘,不用“·”乘,也不能省略乘号;

(3)数与字母相乘时,一般在结果中把数写在字母前面,如a×5应写成5a;

(4)带分数与字母相乘时,要把带分数改成假分数形式,如a×应写成a;

(5)在代数式中出现除法运算时,一般用分数线将被除式和除式联系,如3÷a写成的形式;

(6)a与b的差写作a-b,要注意字母顺序;若只说两数的差,当分别设两数为a、b时,则应分类,写做a-b和b-a.

二、几个重要的代数式(m、n表示整数)。

(1)a与b的平方差是:a2-b2;a与b差的平方是:(a-b)2;

(2)若a、b、c是正整数,则两位整数是:10a+b,则三位整数是:100a+10b+c;

(3)若m、n是整数,则被5除商m余n的数是:5m+n;偶数是:2n,奇数是:2n+1;三个连续整数是:n-1、n、n+1;

(4)若b>0,则正数是:a2+b,负数是:-a2-b,非负数是:a2,非正数是:-a2.

三、有理数。

以上就是数学七年级上册知识点的全部内容,初一上册数学知识点:1、数轴:数轴三要素:原点,正方向和单位长度;数轴上的点与实数是一一对应的。2、相反数:实数a的相反数是-a;若a与b互为相反数,则有a+b=0,反之亦然;几何意义:在数轴上。

猜你喜欢