2017广西数学试卷?2017-2018学年广西南宁市初三上学期期末数学试卷一、选择题(每小题3分,共36分)1.(3分)下列标志是中心对称图形的是()A.B.C.)D.2.(3分)下列方程中,那么,2017广西数学试卷?一起来了解一下吧。
九年级数学的学习浸透着奋斗的泪泉,那么期末考试收获又会是什么样的成果?以下是我为你整理的人教版2017九年级数学上册期末试卷,希望对大家有帮助!
人教版2017九年级数学上册期末试卷
一、选择题(每小题3分,共30分)
1.(2016•厦门)方程x2-2x=0的根是()
A.x1=x2=0 B.x1=x2=2 C.x1=0,x2=2 D.x1=0,x2=-2
2.(2016•大庆)下列图形中是中心对称图形的有()个.
A.1 B.2 C.3 D.4
3.(2016•南充)抛物线y=x2+2x+3的对称轴是()
A.直线x=1 B.直线x=-1 C.直线x=-2 D.直线x=2
4.(2016•黔西南州)如图,△ABC的顶点均在⊙O上,若∠A=36°,则∠OBC的度数为()
A.18° B.36° C.60° D.54°
第4题图
第6题图
5.(2016•葫芦岛)下列一元二次方程中有两个相等实数根的是()
A.2x2-6x+1=0 B.3x2-x-5=0 C.x2+x=0 D.x2-4x+4=0
6.(2016•长春)如图,在Rt△ABC中,∠BAC=90°,将Rt△ABC绕点C按逆时针方向旋转48°得到Rt△A′B′C,点A在边B′C上,则∠B′的大小为()
A.42° B.48° C.52° D.58°
7.(2016•x疆)一个不透明的布袋里装有5个只有颜色不同的球,其中2个红球,3个白球,从布袋中随机摸出一个球,摸出红球的概率是()
A.12 B.23 C.25 D.35
8.(2016•兰州)如图,用一个半径为5 cm的定滑轮带动重物上升,滑轮上一点P旋转了108°,假设绳索(粗细不计)与滑轮之间没有滑动,则重物上升了()
A.π cm B.2π cm C.3π cm D.5π cm
9.(2016•资阳)如图,在Rt△ABC中,∠ACB=90°,AC=23,以点B为圆心,BC的长为半径作弧,交AB于点D,若点D为AB的中点,则阴影部分的面积是()
A.23-23π B.43-23π C.23-43π D.23π
第8题图
第9题图
第10题图
10.(2016•日照)如图是二次函数y=ax2+bx+c的图象,其对称轴为x=1,下列结论:①abc>0;②2a+b=0;③4a+2b+c<0;④若(-32,y1),(103,y2)是抛物线上两点,则y1
A.①② B.②③ C.②④ D.①③④
二、填空题(每小题3分,共24分)
11.(2016•日照)关于x的方程2x2-ax+1=0一个根是1,则它的另一个根为________.
12.(2016•孝感)若一个圆锥的底面圆半径为3 cm,其侧面展开图的圆心角为120°,则圆锥的母线长是______cm.
13.(2016•哈尔滨)一个不透明的袋子中装有黑、白小球各两个,这些小球除颜色外无其他差别,从袋子中随机摸出一个小球后,放回并摇匀,再随机摸出一个小球,则两次摸出的小球都是白球的概率为________.
14.(2016•黔东南州)如图,在△ACB中,∠BAC=50°,AC=2,AB=3,现将△ACB绕点A逆时针旋转50°得到△AC1B1,则阴影部分的面积为______.
第14题图
第18题图
15.(2016•泸州)若二次函数y=2x2-4x-1的图象与x轴交于A(x1,0),B(x2,0)两点,则1x1+1x2的值为________.
16.(2016•孝感)《九章算术》是东方数学思想之源,该书中记载:“今有勾八步,股一十五步,问勾中容圆径几何.”其意思为:“今有直角三角形,勾(短直角边)长为8步,股(长直角边)长为15步,问该直角三角形内切圆的直径是多少步.”该问题的答案是________步.
17.已知当x1=a,x2=b,x3=c时,二次函数y=12x2+mx对应的函数值分别为y1,y2,y3,若正整数a,b,c恰好是一个三角形的三边长,且当a
18.如图,在⊙O中,AB是直径,点D是⊙O上一点,点C是AD︵的中点,CE⊥AB于点E,过点D的切线交EC的延长线于点G,连接AD,分别交CE,CB于点P,Q,连接AC,关于下列结论:①∠BAD=∠ABC;②GP=GD;③点P是△ACQ的外心,其中结论正确的是________(只需填写序号).
三、解答题(共66分)
19.(6分)用适当的方法解下列一元二次方程:
(1)2x2+4x-1=0; (2)(y+2)2-(3y-1)2=0.
20.(7分)如图,△BAD是由△BEC在平面内绕点B旋转60°而得,且AB⊥BC,BE=CE,连接DE.
(1)求证:△BDE≌△BCE;
(2)试判断四边形ABED的形状,并说明理由.
21.(7分)(2016•呼伦贝尔)有甲、乙两个不透明的布袋,甲袋中有2个完全相同的小球,分别标有数字0和-2;乙袋中有3个完全相同的小球,分别标有数字-2,0和1,小明从甲袋中随机取出1个小球,记录标有的数字为x,再从乙袋中随机取出1个小球,记录标有的数字为y,这样确定了点Q的坐标(x,y).
(1)写出点Q所有可能的坐标;
(2)求点Q在x轴上的概率.
22.(8分)已知关于x的一元二次方程x2-(2k+1)x+k2+2k=0有两个实数根x1,x2.
(1)求实数k的取值范围;
(2)是否存在实数k,使得x1•x2-x12-x22≥0成立?若存在,请求出k的值;若不存在,请说明理由.
23.(8分)用长为32米的篱笆围一个矩形养鸡场,设围成的矩形一边长为x米,面积为y平方米.
(1)求y关于x的函数解析式;
(2)当x为何值时,围成的养鸡场面积为60平方米?
(3)能否围成面积为70平方米的养鸡场?如果能,请求出其边长;如果不能,请说明理由.
24.(9分)如图,AB是⊙O的直径,ED︵=BD︵,连接ED,BD,延长AE交BD的延长线于点M,过点D作⊙O的切线交AB的延长线于点C.
(1)若OA=CD=22,求阴影部分的面积;
(2)求证:DE=DM.
25.(10分)(2016•云南)草莓是云南多地盛产的一种水果,今年某水果销售店在草莓销售旺季,试销售成本为每千克20元的草莓,规定试销期间销售单价不低于成本单价,也不高于每千克40元,经试销发现,销售量y(千克)与销售单价x(元)符合一次函数关系,如图是y与x的函数关系图象.
(1)求y与x的函数解析式;
(2)设该水果销售店试销草莓获得的利润为W元,求W的最大值.
26.(11分)(2016•泰安)如图,在平面直角坐标系中,抛物线y=ax2+bx+c的顶点坐标为(2,9),与y轴交于点A(0,5),与x轴交于点E,B.
(1)求二次函数y=ax2+bx+c的解析式;
(2)过点A作AC平行于x轴,交抛物线于点C,点P为抛物线上的一点(点P在AC上方),作PD平行于y轴交AB于点D,问当点P在何位置时,四边形APCD的面积最大?并求出最大面积;
(3)若点M在抛物线上,点N在其对称轴上,使得以A,E,N,M为顶点的四边形是平行四边形,且AE为其一边,求点M,N的坐标.
人教版2017九年级数学上册期末试题答案
1.C2.B3.B4.D5.D6.A7.C8.C9.A
10.C11.1212.913.1414.54π15.-4
16.617.m>-52点拨:方法一:∵正整数a,b,c恰好是一个三角形的三边长,且a-2.5.方法二:当a
∴m>-12(a+b),m>-12(b+c).∵a,b,c恰好是一个三角形的三边长,a-12(a+b),∵a,b,c为正整数,∴a,b,c的最小值分别为2,3,4,∴m>-12(a+b)≥-12(2+3)=-52,∴m>-52,故答案为m>-52.18.②③19.(1)x1=-1+62,x2=-1-62.(2)y1=-14,y2=32.20.(1)证明:∵△BAD是由△BEC在平面内绕点B旋转60°而得,∴DB=CB,∠ABD=∠EBC,∠ABE=60°,∵AB⊥BC,∴∠ABC=90°,∴∠DBE=∠CBE=30°,在△BDE和△BCE中,∵DB=CB,∠DBE=∠CBE,BE=BE,∴△BDE≌△BCE.(2)四边形ABED为菱形.理由如下:由(1)得△BDE≌△BCE,∵△BAD是由△BEC旋转而得,∴△BAD≌△BEC,∴BA=BE,AD=EC=ED,又∵BE=CE,∴BE=ED,∴四边形ABED为菱形.21.(1)画树状图为:
共有6种等可能的结果数,它们为(0,-2),(0,0),(0,1),(-2,-2),(-2,0),(-2,1).(2)点Q在x轴上的结果数为2,所以点Q在x轴上的概率为26=13.22.(1)∵原方程有两个实数根,∴[-(2k+1)]2-4(k2+2k)≥0,∴k≤14,∴当k≤14时,原方程有两个实数根.(2)不存在实数k,使得x1•x2-x12-x22≥0成立.理由如下:假设存在实数k,使得x1•x2-x12-x22≥0成立.∵x1,x2是原方程的两根,∴x1+x2=2k+1,x1•x2=k2+2k.由x1•x2-x12-x22≥0,得3x1•x2-(x1+x2)2≥0,∴3(k2+2k)-(2k+1)2≥0,整理得-(k-1)2≥0,∴只有当k=1时,不等式才能成立.又∵由(1)知k≤14,∴不存在实数k,使得x1•x2-x12-x22≥0成立.23.(1)设围成的矩形一边长为x米,则矩形的另一边长为(16-x)米.依题意得y=x(16-x)=-x2+16x,故y关于x的函数解析式是y=-x2+16x.(2)由(1)知,y=-x2+16x.当y=60时,-x2+16x=60,解得x1=6,x2=10,即当x是6或10时,围成的养鸡场面积为60平方米.(3)不能围成面积为70平方米的养鸡场.理由如下:由(1)知,y=-x2+16x.当y=70时,-x2+16x=70,即x2-16x+70=0,因为Δ=(-16)2-4×1×70=-24<0,所以该方程无实数解.故不能围成面积为70平方米的养鸡场.
24.
(1)如图,连接OD,∵CD是⊙O切线,∴OD⊥CD,∵OA=CD=22,OA=OD,∴OD=CD=22,∴△OCD为等腰直角三角形,∴∠DOC=∠C=45°,∴S阴影=S△OCD-S扇形OBD=12×22×22-45π×(22)2360=4-π.(2)证明:如图,连接AD,∵AB是⊙O直径,∴∠ADB=∠ADM=90°,又∵ED︵=BD︵,∴ED=BD,∠MAD=∠BAD,在△AMD和△ABD中,∠ADM=∠ADB,AD=AD,∠MAD=∠BAD,∴△AMD≌△ABD,∴DM=BD,∴DE=DM.25.(1)设y与x的函数解析式为y=kx+b,根据题意,得20k+b=300,30k+b=280,解得k=-2,b=340,∴y与x的函数解析式为y=-2x+340(20≤x≤40).(2)由已知得W=(x-20)(-2x+340)=-2x2+380x-6 800=-2(x-95)2+11 250,∵-2<0,∴当x≤95时,W随x的增大而增大,∵20≤x≤40,∴当x=40时,W最大,最大值为-2(40-95)2+11 250=5 200(元).26.
(1)设抛物线解析式为y=a(x-2)2+9,∵抛物线与y轴交于点A(0,5),∴4a+9=5,∴a=-1,y=-(x-2)2+9=-x2+4x+5.(2)当y=0时,-x2+4x+5=0,∴x1=-1,x2=5,∴E(-1,0),B(5,0),设直线AB的解析式为y=mx+n,∵A(0,5),B(5,0),∴m=-1,n=5,∴直线AB的解析式为y=-x+5.设P(x,-x2+4x+5),∴D(x,-x+5),∴PD=-x2+4x+5+x-5=-x2+5x,∵AC=4,∴S四边形APCD=12×AC×PD=2(-x2+5x)=-2x2+10x,∴当x=-102×(-2)=52时,∴即点P(52,354)时,S四边形APCD最大=252.(3)如图,过点M作MH垂直于对称轴,垂足为点H,∵四边形AENM是平行四边形,∴MN∥AE,MN=AE,∴△HMN≌△AOE,∴HM=OE=1.∴M点的横坐标为x=3或x=1.当x=1时,M点纵坐标为8,当x=3时,M点纵坐标为8,∴M点的坐标为M1(1,8)或M2(3,8),∵A(0,5),E(-1,0),∴直线AE解析式为y=5x+5,∵MN∥AE,∴可设直线MN的解析式为y=5x+b,∵点N在抛物线对称轴x=2上,∴N(2,10+b),∵AE2=OA2+OE2=26,∵MN=AE,∴MN2=AE2,∵M点的坐标为M1(1,8)或M2(3,8),∴点M1,M2关于抛物线对称轴x=2对称,∵点N在抛物线对称轴上,∴M1N=M2N,∴MN2=(1-2)2+[8-(10+b)]2=1+(b+2)2=26,∴b=3或b=-7,∴10+b=13或10+b=3.∴当M点的坐标为(1,8)时,N点坐标为(2,13),当M点的坐标为(3,8)时,N点坐标为(2,3).
链接: 1ZvO41RW6ItI8fZU9qSdbOg
逗你学统编人教版小学数学二年级下册同步学,完结版百度网盘500M超清视频
整理了2017年六年级上册数学期中试卷及参考答案,有些数学式子显示不出,请原谅,希望能帮到你。同学们应该找自己不擅长的题进行有针对性的练习。
2017年六年级上册数学期中试卷题目
一、 填空题(20分)
1. ( )÷5=0.6=15( ) =( ):40=( )%
2. 10/12和11/12的比值是( ),化简比是( )。
3. 在 、0.333、33%、0.3中,最大的数是( ),最小的数是( )。
4. 一道数学题全班有40人做,10个做错,这道题的正确率是 ( )。
5. 25比20多( )%。 ( )米的 是 米。
6. 一台榨油机 小时榨油300千克。照这样计算,1小时榨油( )千克,榨1千克油需( )小时。
7. 某班学生人数在40人到50人之间,男生人数和女生人数的比是5∶6,这个班有男生( )人,女生( )人。
8. 在长为8厘米,宽为6厘米的长方形中画一个最大的圆,这个圆的面积是( )平方厘米,周长是( )厘米。
9. .用圆规画一个周长为31.4厘米的圆,圆规两脚间的距离应取( )厘米,所画圆的面积是( )平方厘米。
10. 买同一个书包,小明花去了他所带钱的 ,小红花去了她所带钱的 。
一、填空。
1.3.05吨=( )吨( )千克()时( )分=3.4时
2.分数单位是 的真分数和最小假分数的和是( )。
3.大圆直径是8厘米,小圆半径是2厘米,小圆周长和大圆周长的比是()。
4.()÷15= =0.4=()%=16:( )
5.数a除以数b,商是4,余数是3,如果数a、 数 b都同时扩大到原来的10倍,商是( ),余数是()。
6.0.8: 化成最简单的整数比是( ),比值是( )。
7.联欢会上,小明按照3个红气球、2个黄气球、1个绿球的顺序把气球串起来装饰教室。则第16个气球是()颜色。
8.如果a= b,(a、b是大于0的自然数)那么,a和b的公因数是(),最小公倍数是()。
9.三个连续的偶数的和是m,其中最小的偶数是( )。
10.一个挂钟时针长5厘米,它的尖端一昼夜走了( )厘米。
11.9千克煤可以发电15度,每度电需用煤()千克,每千克煤可发电()度。
12.单独完成同一件工作,甲要4天,乙要5天,甲的工效是乙的( )%
13.一个长方体的长是8分米,宽是6分米,高是4分米,如果把这个长方体的长、宽、高都缩小到原来的 ,那么现在的长方体的体积是原来长方体体积的( )。
14.把一个圆柱体的侧面展开,得到一个正方形,这个圆柱体的底面半径是5厘米,圆柱体的高是( )。
2017年六年级下册数学期末试卷[人教版]
孩子是有很强自尊心的,如果考的好会直接影响孩子的学习态度,考不好就会有心理负担,对于以后的学习会有很大的压力。下面是我整理的2017年六年级下册数学期末试卷,希望大家认真练习!
一、填空
1.一个八位数,最高位上的数既是奇数又是合数,万位上的数既是质数又是偶数,个位上的数既不是质数也不是合数,其余各位上都是0,这个数写作( )。
2.一个三位小数保留一位小数约是6.0,这个三位小数最大是( ),最小是( )。
3.有三根绳子,第一根用去全长的16 ,第二根用去全长的38 ,第三根用去全长的25 ,三根绳子剩下的长度相等,原来第( )根绳子最长。
4.135 里面有( )个120 ,有24个1( ) ,有( )1%。
5.6个奇数的和是98,积是4267305,这6个奇数中最大的数与最小的数相差( )。
6.在1×2×3×4×……×30的积的所有因数中,有( )个素数。
7.三个连续奇数的最小公倍数是693,这三个数中最小的一个数是( )。
8.有一个最简分数,它的分子和分母的积是60,这样的真分数有( )个。
9.由11个1,11个0.1,11个0.01组成的数是( )。
以上就是2017广西数学试卷的全部内容,本次试卷命题以《数学课程标准》为依据,紧扣新课程理念,体现了义务 教育 的普及性和基础性,也体现了数学学科的综合性和实用性。本次试卷紧扣课程标准阶段目标,从基础知识、计算、解决问题三大方面考查学生的双基、思维、。