九连环的历史? 那么,九连环的历史?一起来了解一下吧。
九连环是一种流传于山西民间的智力玩具。它用九个圆环相连成串,以解开为胜。明《丹铅总录》记载:“九连环,两者互相贯为一,得其关捩,解之为二,又合而为一。”其制作,用金属丝制成圆形小环九枚,九环相连,套在条形横板或各式框架上,其框柄有剑形、如意形、蝴蝶形、梅花形等,各环均以铜杆与之相接。玩时,依法使九环全部联贯子铜圈上,或经过穿套全部解下。其解法多样,可分可合,变化多端。得法者需经过81次上下才能将相连的九个环套入一柱,再用次才能将九个环全部解下。此外,也可套成花篮、绣球、宫灯等状。 http://www.sw5000.com/showthread.php?t=10985 解开九连环共需要三百四十一步,只要上或下一个环,就算一步,不是在框架上滑动。希望大家能够通过独立思考,解决这个问题。九连环的解下和套上是一对逆过程。 九连环的每个环互相制约,只有第一环能够自由上下。要想下/上第n个环,就必须满足两个条件,第一个环除外。一、第n-1个环在架上;二、第n-1个环前面的环全部不在架上。玩九连环就是要努力满足上面的两个条件。解下九连环本质上要从后面的环开始下,而先下前面的环,是为了下后面的环,前面的环还要装上,不算是真正地取下来。 要想下第九环,必须满足以下两个条件:第八环在架上;而第一~七环全部不在架上。在初始状态,前者是满足的,现在要满足后者。照这样推理,就要下第七环,一直推出要下第一环,而不是下第二环。先下第二环是偶数连环的解法。上下第二环后就要上下第一环,所以在实际操作中就同时上下第一、二环,这是两步。 九连环在任何正常状态时,都只有两条路可走:上某环和下某环,别的环动不了。其中一条路是刚才走过来的,不能重复走,否则就弄回去了。这样,就会迫使连环者去走正确的道路。而很多人由于不熟悉,常走回头路,解不了九连环。首次解九连环要多思考,三个环上下的动作要练熟,记住上中有下,下中有上。熟练后会有更深刻的理解,不需要推理了。
下面是解下九连环前五个环的具体步骤: 步骤: 1 2 3 4、5 6 7、8 9 10 移动: 下一 下三 上一 下一二 下五 上一二 下一 上三 步骤: 11 12、13 14 15、16 17 18 19 20、21 移动: 上一 下一二 下四 上一二 下一 下三 上一 下一二
另一种拆法: 是把框架和九个圆环分开,如左手持框架柄,右手握环,从右到左编号为1-9将环套入框架为“上”,取出为“下”。 拆法: 下1下3、上1下1、2下5,上1、2下1上3,上1下1、2下4,上1、2下1上3,上1下1、2下7,上1、2下1上3,上1下1、2上4,上1、2下1下3,上1下1、2上5,上1、2下1上3,上1下1、2下4,上1、2下1下3,上1下1、2下6,上1、2下1上3,上1下1、2上4,上1、2下1下3、上1下1、2下5,上1、2下1上3,上1下1、2下4,上1、2下1下3,上1下1、2下9为拆下第一环,按上法可拆下87654321环,关键是勤动脑,开发智力。
装法: 为右手持框柄,左手拿圆环上1、2下1上3,上1下1、2上4,上1、2下1下3,上1下1、2上5按以上方法可以全部装上。
九连环是中国传统的有代表性的智力玩具,凝结着中国传统文化,具有极强的趣味性。九连环能既练脑又练手,对于开发人的逻辑思维能力及活动手指筋骨大有好处。同时它还可以培养学习工作的专注精神和耐心,实为老少咸宜。 九连环历史非常悠久,据说发明于战国时代。它是人类所发明的最奥妙的玩具之一。宋朝以后,九连环开始广为流传。在明清时期,上至士大夫,下至贩夫走卒,大家都很喜欢它。很多著名文学作品都提到过九连环,《红楼梦》中就有林黛玉巧解九连环的记载。在国外,数学家卡尔达诺在公元1550年已经提到了九连环。后来,数学家华利斯对九连环做了精辟的分析。 格罗斯也深入研究了九连环,用二进制数给了它一个十分完美的答案。 九连环主要由九个圆环及框架组成。每一个圆环上都连有一个直杆,各直杆在后一个圆环内穿过,九个直杆的另一端用板或圆环相对固定住。圆环在框架上可以解下或套上。玩九连环 就是要把这九个圆环全部从框架解下或套上。九连环的玩法比较复杂,无论解下还是套上,都要遵循一定的规则。 19世纪的格罗斯经过运算,证明共需要三百四十一步,到目前为止还没有其它更为便捷的答案。1975年国外出了一本关于离散数学的书,其中收录了这样一个数列: 1,2,5,10,21,42,85,170,341…… 这就是"九连环"的数列。 实际上,解下或套上n连环所需步数可用cm公式算出: f(n)=[2^(n 1)-0.5*(-1)^n-1.5]/3。 九连环的确环环相扣,趣味无穷。在第一次玩时,需要分析与综合相结合,不断进行思考和推理。复杂的玩法需要耐心和在困难面前不急躁的作风,切不可心浮气躁,使用暴力。玩九连环的次数多了,就会越来越熟练,也会对玩法有更加深刻的理解,能更好地体会其中的内在思想。
九连环是中国民间玩具。以金属丝制成9个圆环,将圆环套装在横板或各式框架上,并贯以环柄。游玩时,按照一定的程序反复操作,可使9个圆环分别解开,或合而为一。 卓文君生於西汉,诸葛亮生於东汉末年,其时汉室江山已分崩离析。二人相差几百年。也就是说,在诸葛亮之前几百年的西汉,九连环已经存在。故“九连环由诸葛亮发明”之说并不正确,可能系後世误传。
九连环是中国传统的有代表性的智力玩具,凝结着中国传统文化,具有极强的趣味性。九连环能既练脑又练手,对于开发人的逻辑思维能力及活动手指筋骨大有好处。同时它还可以培养学习工作的专注精神和耐心,实为老少咸宜。
九连环历史非常悠久,据说发明于战国时代。它是人类所发明的最奥妙的玩具之一。宋朝以后,九连环开始广为流传。在明清时期,上至士大夫,下至贩夫走卒,大家都很喜欢它。很多著名文学作品都提到过九连环,《红楼梦》中就有林黛玉巧解九连环的记载。在国外,数学家卡尔达诺在公元1550年已经提到了九连环。后来,数学家华利斯对九连环做了精辟的分析。 格罗斯也深入研究了九连环,用二进制数给了它一个十分完美的答案。
九连环主要由九个圆环及框架组成。每一个圆环上都连有一个直杆,各直杆在后一个圆环内穿过,九个直杆的另一端用板或圆环相对固定住。圆环在框架上可以解下或套上。玩九连环 就是要把这九个圆环全部从框架解下或套上。九连环的玩法比较复杂,无论解下还是套上,都要遵循一定的规则。
19世纪的格罗斯经过运算,证明共需要三百四十一步,到目前为止还没有其它更为便捷的答案。1975年国外出了一本关于离散数学的书,其中收录了这样一个数列: 1,2,5,10,21,42,85,170,341…… 这就是"九连环"的数列。
实际上,解下或套上n连环所需步数可用CM公式算出: f(n)=[2^(n+1)-0.5*(-1)^n-1.5]/3。
九连环的确环环相扣,趣味无穷。在第一次玩时,需要分析与综合相结合,不断进行思考和推理。复杂的玩法需要耐心和在困难面前不急躁的作风,切不可心浮气躁,使用暴力。玩九连环的次数多了,就会越来越熟练,也会对玩法有更加深刻的理解,能更好地体会其中的内在 思想。
九连环的各种玩法很多,但都是思维方法的不同,其过程是一样的。如果通过自己独立 思考解开九连环,就会形成一套最适合自己的思维方法。九连环如此的有趣,它的爱好者一定大有人在。像九连环和孔明锁这类智力玩具,是我国劳动人民智慧的结晶。我们应该为弘扬传统文化做出贡献,让九连环永远流传。希望更多的人知道和喜欢九连环,能玩好它并体会到其中的内在思想。
* 玩法 :解开九连环共需要三百四十一步,只要上或下一个环,就算一步,不是在框架上滑动。希望大家能够通过独立思考,解决这个问题。九连环的解下和套上是一对逆过程。
九连环的每个环互相制约,只有第一环能够自由上下。要想下/上第n个环,就必须满足两个条件(第一个环除外):
一、第n-1个环在架上;
二、第n-1个环前面的环全部不在架上。
玩九连环就是要努力满足上面的两个条件。解下九连环本质上要从后面的环开始下,而先下前面的环,是为了下后面的环,前面的环还要装上,不算是真正地取下来。
要想下第九环,必须满足以下两个条件:第八环在架上;而第一~七环全部不在架上。 在初始状态,前者是满足的,现在要满足后者。照这样推理,就要下第七环,一直推出要下第一环,而不是下第二环。先下第二环是偶数连环的解法。上下第二环后就要上下第一环,所以在实际操作中就同时上下第一、二环,这是两步。
九连环在任何正常状态时,都只有两条路可走:上某环和下某环,别的环动不了。其中一条路是刚才走过来的,不能重复走,否则就弄回去了。这样,就会迫使连环者去走正确的道路。而很多人由于不熟悉,常走回头路,解不了九连环。首次解九连环要多思考,三个环上下的动作要练熟,记住上中有下,下中有上。熟练后会有更深刻的理解,不需要推理了。
九连环是中国传统的有代表性的智力玩具,凝结着中国传统文化,具有极强的趣味性。九连环能既练脑又练手,对于开发人的逻辑思维能力及活动手指筋骨大有好处。同时它还可以培养学习工作的专注精神和耐心,实为老少咸宜。
九连环历史非常悠久,据说发明于战国时代。它是人类所发明的最奥妙的玩具之一。宋朝以后,九连环开始广为流传。在明清时期,上至士大夫,下至贩夫走卒,大家都很喜欢它。很多著名文学作品都提到过九连环,《红楼梦》中就有林黛玉巧解九连环的记载。在国外,数学家卡尔达诺在公元1550年已经提到了九连环。后来,数学家华利斯对九连环做了精辟的分析。 格罗斯也深入研究了九连环,用二进制数给了它一个十分完美的答案。
九连环主要由九个圆环及框架组成。每一个圆环上都连有一个直杆,各直杆在后一个圆环内穿过,九个直杆的另一端用板或圆环相对固定住。圆环在框架上可以解下或套上。玩九连环 就是要把这九个圆环全部从框架解下或套上。九连环的玩法比较复杂,无论解下还是套上,都要遵循一定的规则。
19世纪的格罗斯经过运算,证明共需要三百四十一步,到目前为止还没有其它更为便捷的答案。1975年国外出了一本关于离散数学的书,其中收录了这样一个数列: 1,2,5,10,21,42,85,170,341…… 这就是"九连环"的数列。
实际上,解下或套上n连环所需步数可用CM公式算出: f(n)=[2^(n+1)-0.5*(-1)^n-1.5]/3。
九连环的确环环相扣,趣味无穷。在第一次玩时,需要分析与综合相结合,不断进行思考和推理。复杂的玩法需要耐心和在困难面前不急躁的作风,切不可心浮气躁,使用暴力。玩九连环的次数多了,就会越来越熟练,也会对玩法有更加深刻的理解,能更好地体会其中的内在 思想。
九连环的各种玩法很多,但都是思维方法的不同,其过程是一样的
以上就是九连环的历史的全部内容, .。