初三上册数学试卷?一、填空题(每小题3分,共36分)1、方程3x2=x的解是 .2、函数 中,自变量x的取值范围是 .3、在同一时刻的物高与影长成比例,如果一古塔在地面上的影长为40米,同时,高为1.5米的测竿的影长为2.5米,那么古塔的高是米 .4、那么,初三上册数学试卷?一起来了解一下吧。
2007~2008学年度第一学期
三年级数学期末综合练习卷
班别:
姓名:
学号:
评分:
一、
填空:(12分)
1、
千克=(
)克
40分=(
)时
2、2的倒数是(
),(
)和0.75互为倒数。
3、16米的
是(
)米,50比40多(
)%,250的20%是(
)。
4、
=(
):40=(
)%
=(
)折=(
)(小数)
5、根据乘法算式:
,请写出两道除法算式
(
)÷(
)=(
)
(
)÷(
)=(
)
6、6.4:0.08化简为最简单的整数比是(
),比值是(
)
7、圆的半径是2米,它的直径是(
)米,周长是(
)米,面积是(
)平方米。
8、光盘的银色部分是一个圆环,内圆半径是2cm,外圆半径是3cm,圆环面积是(
)
9、我国长征运载火箭进行了70次发射,其中只有7次成功,发射的成功率是(
)%
10、陈老师买了一套总价为60万元的住房,要缴纳1.5%的住房契税,契税要缴纳(
)元。
二、判断下面各题,对的在括号里画“√”,错的画“×”(5分)
1、如果A:B=4:5,那么A=3,B=5
(
)
2、大牛和小牛的头数比是4:5,表示大牛比小牛少
(
)
3、圆的半径扩大3倍,它的周长扩大3倍,它的面积扩大
6倍(
)
4、某商品打“八五折”出售,就是降价85%出售
(
)
5、一瓶纯牛奶,亮亮第一次喝了
,然后在瓶里兑满水,又接着喝去
。
对于九年级学生来说,要想学好数学,多做数学试题是难免的。以下是我为你整理的,希望对大家有帮助!
浙教版九年级数学上册期末试题
一、选择题***本大题共10小题,每小题4分,共40分.在每小题给出的四
个选项中,只有 一项是符合题目要求的.请将答案填写在题后括号内***
1.如果□+2=0,那么“□”内应填的实数是*** ***
A.-2 B.- C. D. 2
2.在 ⊿ABC中,若各边的长度同时都扩大2倍,则锐角A的正弦值与余弦值的情况*** ***
A.都扩大2倍 B.都缩小2倍 C.都不变 D.正弦值扩大2倍, 余弦值缩小2倍
3.路程s与时间t的大致图象如下左图所示,则速度v与时间t的大致图象为*** ***
o
A. B. C. D.
4.小明与两位同学进行乒乓球比赛,用“手心、手背”游戏确定出场顺序. 设每
人每次出手心、手背的可能性相同. 若有一人与另外两人不同,则此人最后出
场.三人同时出手一次, 小明最后出场比赛的概率为*** ***
A. B. C. D.
5.如图, 在 ABCD中, AB=10, AD=6, E是AD的中点, 在AB上取一点F, 使
△CBF∽△CDE, 则BF的长是*** ***
¬ A.5¬ B.8.2¬ C.***¬ D.1.8
6. 从1到9这九个自然数中任取一个,是2的倍数或是3的倍数的概率为*** *** ¬
A. B. C. D.
7.如图,小正方形的边长均为l,则下列图中的三角形***阴影部分***与△ABC相似的是*** ***
A B C D
8.如图,己知△ABC,任取一点O,连AO,BO,CO,并取它们的中点
D,E,F,得△DEF,则下列说法正确的个数是*** ***
①△ABC与△DEF是位似图形; ②△ABC与△DEF是相似图形;
③△ABC与△DEF的周长比为1:2;④△ABC与△DEF的面积比为4:1.
A.1 B.2 C.3 D.4
9.已知二次函式 的图象过点A***1,2***,B***3,2***,C***5,7***.若点M***-2,y1***,N******-1,y2***,K***8,y3***也在二次函式 的图象上,则下列结论正确的是*** ***
A.y1
10.在一次1500米比赛中,有如下的判断: 甲说: 丙第一 , 我第三; 乙说: 我第一, 丁第四; 丙说: 丁第二,
我第三.结果是每人的两句话中都只说对了一句,则可判断第一名是*** ***
A.甲 B.乙 C.丙 D.丁
二、填空题***本大题共6小题,每小题5分,共30分,请将答案填在横线上***
11.己知平顶屋面 ***截面为等腰三角形*** 的宽度 和坡顶的设计倾角 ***如图***,
则设计高度 为_________.
***第11题图*** ***第14题图*** ***第15题图***
12.有一个直角梯形零件 , ,斜腰 的长为 , ,则该零件另一腰 的长是__________ .***结果不取近似值***
13.在一张影印出来的纸上,一个等腰三角形的底边长由原图中的3 cm变成了6 cm,则腰长由原图中的
2 cm变成了 cm.
14.二次函式 和一次函式 的图象如图所示,则
时, 的取值范围是____________.
15.如图,四边形ABCD是长方形,以BC为直径的半圆与AD边只有一个交点,且AB=x,则阴影部分
的面积为___________.
16.有一个Rt△ABC,∠A= ,∠B= ,AB=1,将它放在平面直角座标系中,使斜边BC在x轴上,
直角顶点A在反比例函式y= 上,则点C的座标为_________.
三、解答题***本大题共8小题,共80分,解答应写出文字说明、证明过程或演算过程***
17.***本题满分8分***
在圣诞节,小明自己动手用纸板制作圆锥形的圣诞老人帽.圆锥帽底面直径为18 cm,母线长为36 cm,请你计算制作一个这样的圆锥帽需用纸板的面积***精确到个位***.
18.***本题满分8分***
九***1***班将竞选出正、副班长各1名,现有甲、乙两位男生和丙、丁两位女生参加竞选.请用列表或画树状图的方法求出两位女生同时当选正、副班长的概率.
19.***本题满分8分***
课堂上,师生一起探究知,可以用己知半径的球去测量圆柱形管子的内径.小明回家后把半径为5 cm的小皮球置于保温杯口上,经过思考找到了测量方法,并画出了草图***如图***.请你根据图中的资料,帮助
小明计算出保温杯的内径.
20.***本题满分8分***
在一个可以改变体积的密闭容器内装有一定质量的二氧化碳,当改变容器的体积时,气体的密度也会随之改变,密度 ***单位:kg/m3***是体积 ***单位:m3***的反比例函式,它的图象如图所示.
***1***求 与 之间的函式关系式并写出自变数 的取值范围;
***2***求当 时气体的密度 .
21.***本题满分10分***
如图,在菱形ABCD中,点E在CD上,连结AE并延长与BC的延长
线交于点F.
***1***写出图中所有的相似三角形***不需证明***;
***2***若菱形ABCD的边长为6,DE:AB=3:5,试求CF的长.
22.***本题满分12分***
如图,AB是⊙O的直径,点P是⊙O上的动点***P与A,B不重合***,连结AP,PB,过点O分别作OE⊥AP于E,OF⊥BP于F.
***1***若AB=12,当点P在⊙O上运动时,线段EF的长会不会改变.若会改变,请说明理由;若不会改变,请求出EF的长;
***2***若AP=BP,求证四边形OEPF是正方形.
23.***本题满分12分***
课堂上,周老师出示了以下问题,小明、小聪分别在黑板上进行了板演,请你也解答这个问题:
在一张长方形ABCD纸片中,AD=25cm, AB=20cm. 现将这张纸片按如下列图示方式摺叠,分别求折痕的长.
***1*** 如图1, 折痕为AE;
***2*** 如图2, P,Q分别为AB,CD的中点,折痕为AE;
***3*** 如图3, 折痕为EF.
24.***本题满分14分***
如图,△ABC中,AC=BC,∠A=30°,AB= . 现将一块三角
板中30°角的顶点D放在AB边上移动,使这个 30°角的两边分别与△ABC的边AC,BC相交于点E, F,连结DE,DF,EF,且使DE始终与AB垂直.设 ,△DEF的面积为 .
***1***画出符合条件的图形,写出与△ADE一定相似的三角形***不包括此三角板***,并说明理由;
***2***问EF与AB可能平行吗?若能,请求出此时AD的长;若不能,请说明理由;
***3***求出 与 之间的函式关系式,并写出自变数 的取值范围.当 为何值时, 有最大值?最大值是为多少?
答案
一、选择题***本大题共10小题,每小题4分,共40分***
1.A 2.C 3.A 4.C 5.D
6.C 7.B 8.C 9.B 10.B
二、填空题***本大题共6小题,每小题5分,共30分***
11. 12. 5 13. 4 14.
15. 16. *** ,0***,*** ,0***,*** ,0***,*** ,0***
三、解答题***本大题共8小题,共80分***
17.***本题满分8分***
解: ………………………………………………………2分
= ≈1018cm2. …………………………………………6分
18.***本题满分8分***
解:树状图分析如下:
………………………………………………………4分
由树状图可知,两位女生当选正、副班长的概率是 = . ………………………4分
***列表方法求解略***
19.***本题满分8分***
解: 连OD, ∵ EG=8, OG=3, ……………………………………………3分
∴ GD=4, ……………………………………………3分
故保温杯的内径为8 cm. ……………………………………………2分
20.***本题满分8分***
解:***1*** . ………………………………………………4分
***2***当 时, =1kg/m3 . ………………………………………………4分
21.***本题满分10分***
解:***1***△ECF∽△ABF,△ECF∽△EDA,△ABF∽△EDA. ………………………3分
***2***∵ DE:AB=3:5, ∴ DE:EC=3:2, ………………………………2分
∵ △ECF∽△EDA, ∴ , …………………………………………2分
∴ . …………………………………………3分
22.***本题满分12分***
解:***1***EF的长不会改变. ………………………………………………2分
∵ OE⊥AP于E,OF⊥BP于F,
∴ AE=EP,BF=FP, …………………………………………2分
∴ . …………………………………………2分
***2***∵AP=BP,又∵OE⊥AP于E,OF⊥BP于F,
∴ OE=OF, …………………………………………3分
∵ AB是⊙O的直径,∴∠P=90°, …………………………………………1分
∴ OEPF是正方形. …………………………………………2分
***或者用 , , ∵ AP=BP,∴ OE=OF证明***
23.***本题满分12分***
解:***1***∵ 由摺叠可知△ABE为等腰直角三角形,
∴ AE= AB=20 cm. …………………………………………3分
***2*** ∵ 由摺叠可知,AG=AB ,∠GAE=∠BAE,
∵ 点P为AB的中点,
∴ AP= AB,
∴ AP= AG,
在Rt△APG中,得∠GAP=60°,∴ ∠EAB=30°, ………………………………2分
在Rt△EAB中, AE= AB= cm. ……………………………………2分
***3***过点E作EH⊥AD于点H,连BF,
由摺叠可知 DE=BE,
∵ AF=FG,DF=AB,GD=AB, ∴ △ABF≌△GDF,
又 ∵ ∠GDF=∠CDE,GD=CD, ∴ Rt△GDF≌Rt△CDE,
∴ DF=DE=BE,
在Rt△DCE中, DC2+CE2=DE2,
∵ CB=25, CD=20,202 + CE2=***25-CE***2,
∴ CE=4.5,BE=25-4.5=20.5,HF=20.5-4.5=16,……………………………2分
在Rt△EHF中,
∵ EH2 + HF2=FE2, 202 + 162=FE2,
∴ EF= = cm. …………………………………………3分
24.***本题满分14分***
解:***1***图形举例:图形正确得2分.
△ADE∽△BFD,
∵ DE⊥AB,∠EDF=30°, ∴∠FDB=60°,
∵ ∠A=∠B,∠AED=∠FDB, …………………………………………1分
∴ △ADE∽△BFD. …………………………………………1分
***2***EF可以平行于AB, …………1分
此时,在直角△ADE中,DE= ,
在直角△DEF中,EF= , …………1分
在直角△DBF中, ∵ BD= , ∴ DF= , …………………1分
而DF=2EF, ∴ = ,
∴ . ………………………………………………………………2分
***3*** ,即 , ,
…………………………………………………………………………3分
当 时, 最大= . ……………………………………………2分
2016-2017九年级数学上册期末数学试卷「附答案」
考生须知:
1.本试卷共4页,共五道大题,25个小题,满分120分;考试时间120分钟。
2.答题纸共6页,在规定位置认真填写学校名称、班级和姓名。
3.试题答案一律书写在答题纸上,在试卷上作答无效。
4.考试结束,请将答题纸交回,试卷和草稿纸可带走。
一、选择题(在下列各题的四个备选答案中,只有一个是符合题意的,请将正确答案前的字母写在答题纸上;本题共32分,每小题4分)
1. 已知⊙O的直径为3cm,点P到圆心O的距离OP=2cm,则点P
A. 在⊙O外 B. 在⊙O上 C. 在⊙O内 D. 不能确定
2. 已知△ABC中,∠C=90°,AC=6,BC=8, 则cosB的值是
A.0.6 B.0.75 C.0.8 D.
3.如图,△ABC中,点 M、N分别在两边AB、AC上,MN∥BC,则下列比例式中,不正确的是
A . B .
C. D.
4. 下列图形中,既是中心对称图形又是轴对称图形的是
A. B. C. D.
5. 已知⊙O1、⊙O2的半径分别是1cm、4cm,O1O2= cm,则⊙O1和⊙O2的位置关系是
A.外离 B.外切 C.内切 D.相交
6. 某二次函数y=ax2+bx+c 的图象如图所示,则下列结论正确的是
A. a>0, b>0, c>0 B. a>0, b>0, c<0
C. a>0, b<0, c>0 D. a>0, b<0, c<0
7.下列命题中,正确的是
A.平面上三个点确定一个圆 B.等弧所对的圆周角相等
C.平分弦的直径垂直于这条弦 D.与某圆一条半径垂直的直线是该圆的切线
8. 把抛物线y=-x2+4x-3先向左平移3个单位,再向下平移2个单位,则变换后的抛物线解析式是
A.y=-(x+3)2-2 B.y=-(x+1)2-1
C.y=-x2+x-5 D.前三个答案都不正确
二、填空题(本题共16分, 每小题4分)
9.已知两个相似三角形面积的比是2∶1,则它们周长的比 _____ .
10.在反比例函数y= 中,当x>0时,y 随 x的增大而增大,则k 的取值范围是_________.
11. 水平相当的甲乙两人进行羽毛球比赛,规定三局两胜,则甲队战胜乙队的概率是_________;甲队以2∶0战胜乙队的概率是________.
12.已知⊙O的直径AB为6cm,弦CD与AB相交,夹角为30°,交点M恰好为AB的一个三等分点,则CD的长为 _________ cm.
三、解答题(本题共30分, 每小题5分)
13. 计算:cos245°-2tan45°+tan30°- sin60°.
14. 已知正方形MNPQ内接于△ABC(如图所示),若△ABC的面积为9cm2,BC=6cm,求该正方形的边长.
15. 某商场准备改善原有自动楼梯的安全性能,把倾斜角由原来的30°减至25°(如图所示),已知原楼梯坡面AB的长为12米,调整后的楼梯所占地面CD有多长?(结果精确到0.1米;参考数据:sin25°≈0.42,cos25°≈0.91,tan25°≈0.47)
16.已知:△ABC中,∠A是锐角,b、c分别是∠B、∠C的对边.
求证:△ABC的面积S△ABC= bcsinA.
17. 如图,△ABC内接于⊙O,弦AC交直径BD于点E,AG⊥BD于点G,延长AG交BC于点F. 求证:AB2=BF•BC.
18. 已知二次函数 y=ax2-x+ 的图象经过点(-3, 1).
(1)求 a 的值;
(2)判断此函数的图象与x轴是否相交?如果相交,请求出交点坐标;
(3)画出这个函数的图象.(不要求列对应数值表,但要求尽可能画准确)
四、解答题(本题共20分, 每小题5分)
19. 如图,在由小正方形组成的12×10的网格中,点O、M和四边形ABCD的顶点都在格点上.
(1)画出与四边形ABCD关于直线CD对称的图形;
(2)平移四边形ABCD,使其顶点B与点M重合,画出平移后的图形;
(3)把四边形ABCD绕点O逆时针旋转90°,画出旋转后的图形.
20. 口袋里有 5枚除颜色外都相同的棋子,其中 3枚是红色的,其余为黑色.
(1)从口袋中随机摸出一枚棋子,摸到黑色棋子的概率是_______ ;
(2)从口袋中一次摸出两枚棋子,求颜色不同的概率.(需写出“列表”或画“树状图”的过程)
21. 已知函数y1=- x2 和反比例函数y2的图象有一个交点是 A( ,-1).
(1)求函数y2的解析式;
(2)在同一直角坐标系中,画出函数y1和y2的图象草图;
(3)借助图象回答:当自变量x在什么范围内取值时,对于x的同一个值,都有y1
22. 工厂有一批长3dm、宽2dm的矩形铁片,为了利用这批材料,在每一块上裁下一个最大的圆铁片⊙O1之后(如图所示),再在剩余铁片上裁下一个充分大的圆铁片⊙O2.
(1)求⊙O1、⊙O2的半径r1、r2的长;
(2)能否在剩余的铁片上再裁出一个与⊙O2 同样大小的圆铁片?为什么?
五、解答题(本题共22分, 第23、24题各7分,第25题8分)
23.如图,在△ABC中,AB=AC,以AB为直径的⊙O分别交AC、BC于点M、N,在AC的延长线上取点P,使∠CBP= ∠A.
(1)判断直线BP与⊙O的位置关系,并证明你的结论;
(2)若⊙O的.半径为1,tan∠CBP=0.5,求BC和BP的长.
24. 已知:如图,正方形纸片ABCD的边长是4,点M、N分别在两边AB和CD上(其中点N不与点C重合),沿直线MN折叠该纸片,点B恰好落在AD边上点E处.
(1)设AE=x,四边形AMND的面积为 S,求 S关于x 的函数解析式,并指明该函数的定义域;
(2)当AM为何值时,四边形AMND的面积最大?最大值是多少?
(3)点M能是AB边上任意一点吗?请求出AM的取值范围.
25. 在直角坐标系xOy 中,已知某二次函数的图象经过A(-4,0)、B(0,-3),与x轴的正半轴相交于点C,若△AOB∽△BOC(相似比不为1).
(1)求这个二次函数的解析式;
(2)求△ABC的外接圆半径r;
(3)在线段AC上是否存在点M(m,0),使得以线段BM为直径的圆与线段AB交于N点,且以点O、A、N为顶点的三角形是等腰三角形?若存在,求出m的值;若不存在,请说明理由.
参考答案
一、 ACCBDABB
二、 9. :1 10. k< -1 11. ,12.
三、13. 原式= -2+ - ×
= -2 + - ……………………………………4分
= -3+ ……………………………………………………5分
14. 作AE⊥BC于E,交MQ于F.
由题意, BC×AE=9cm2 , BC=6cm.
∴AE=3cm. ……………………………1分
设MQ= xcm,
∵MQ∥BC,∴△AMQ∽△ABC. ……………………2分
∴ . ……………………3分
又∵EF=MN=MQ,∴AF=3-x.
∴ . ……………………………………4分
解得 x=2.
答:正方形的边长是2cm. …………………………5分
15. 由题意,在Rt△ABC中,AC= AB=6(米), …………………1分
又∵在Rt△ACD中,∠D=25°, =tan∠D, ……………………………3分
∴CD= ≈ ≈12.8(米).
答:调整后的楼梯所占地面CD长约为12.8米. ……………………5分
16. 证明:作CD⊥AB于D,则S△ABC= AB×CD. ………………2分
∵ 不论点D落在射线AB的什么位置,
在Rt△ACD中,都有CD=ACsinA. …………………4分
又∵AC=b,AB=c,
∴ S△ABC= AB×ACsinA
= bcsinA. …………5分
17. 证明:延长AF,交⊙O于H.
∵直径BD⊥AH,∴AB⌒ = BH⌒ . ……………………2分
∴∠C=∠BAF. ………………………3分
在△ABF和△CBA中,
∵∠BAF =∠C,∠ABF=∠CBA,
∴△ABF∽△CBA. …………………………………………4分
∴ ,即AB2=BF×BC. …………………………………………5分
证明2:连结AD,
∵BD是直径,∴∠BAG+∠DAG=90°. ……………………1分
∵AG⊥BD,∴∠DAG+∠D=90°.
∴∠BAF =∠BAG =∠D. ……………………2分
又∵∠C =∠D,
∴∠BAF=∠C. ………………………3分
18. ⑴把点(-3,1)代入,
得 9a+3+ =1,
∴a= - .
⑵ 相交 ……………………………………………2分
由 - x2-x+ =0, ……………………………3分
得 x= - 1± .
∴ 交点坐标是(- 1± ,0). ……………………………4分
⑶ 酌情给分 ……………………………………………5分
19. 给第⑴小题分配1分,第⑵、⑶小题各分配2分.
20. ⑴ 0.4 ……………………………………………2分
⑵ 0.6 ……………………………………………4分
列表(或画树状图)正确 ……………………………………5分
21. ⑴把点A( ,- 1)代入y1= - ,得 –1= - ,
∴ a=3. ……………………………………………1分
设y2= ,把点A( ,- 1)代入,得 k=– ,
∴ y2=– . ……………………………………2分
⑵画图; ……………………………………3分
⑶由图象知:当x<0, 或x> 时,y1
22. ⑴如图,矩形ABCD中,AB= 2r1=2dm,即r1=1dm. ………………………………1分
BC=3dm,⊙O2应与⊙O1及BC、CD都相切.
连结O1 O2,过O1作直线O1E∥AB,过O2作直线O2E∥BC,则O1E⊥O2E.
在Rt△O1 O2E中,O1 O2=r1+ r2,O1E= r1– r2,O2E=BC–(r1+ r2).
由 O1 O22= O1E2+ O2E2,
即(1+ r2)2 = (1– r2)2+(2– r2)2.
解得,r2= 4±2 . 又∵r2<2,
∴r1=1dm, r2=(4–2 )dm. ………………3分
⑵不能. …………………………………………4分
∵r2=(4–2 )> 4–2×1.75= (dm),
即r2> dm.,又∵CD=2dm,
∴CD<4 r2,故不能再裁出所要求的圆铁片. …………………………………5分
23. ⑴相切. …………………………………………1分
证明:连结AN,
∵AB是直径,
∴∠ANB=90°.
∵AB=AC,
∴∠BAN= ∠A=∠CBP.
又∵∠BAN+∠ABN=180°-∠ANB= 90°,
∴∠CBP+∠ABN=90°,即AB⊥BP.
∵AB是⊙O的直径,
∴直线BP与⊙O相切. …………………………………………3分
⑵∵在Rt△ABN中,AB=2,tan∠BAN= tan∠CBP=0.5,
可求得,BN= ,∴BC= . …………………………………………4分
作CD⊥BP于D,则CD∥AB, .
在Rt△BCD中,易求得CD= ,BD= . …………………………………5分
代入上式,得 = .
∴CP= . …………………………………………6分
∴DP= .
∴BP=BD+DP= + = . …………………………………………7分
24. ⑴依题意,点B和E关于MN对称,则ME=MB=4-AM.
再由AM2+AE2=ME2=(4-AM)2,得AM=2- . ……………………1分
作MF⊥DN于F,则MF=AB,且∠BMF=90°.
∵MN⊥BE,∴∠ABE= 90°-∠BMN.
又∵∠FMN =∠BMF -∠BMN=90°-∠BMN,
∴∠FMN=∠ABE.
∴Rt△FMN≌Rt△ABE.
∴FN=AE=x,DN=DF+FN=AM+x=2- +x. ………………………2分
∴S= (AM+DN)×AD
=(2- + )×4
= - +2x+8. ……………………………3分
其中,0≤x<4. ………………………………4分
⑵∵S= - +2x+8= - (x-2)2+10,
∴当x=2时,S最大=10; …………………………………………5分
此时,AM=2- ×22=1.5 ………………………………………6分
答:当AM=1.5时,四边形AMND的面积最大,为10.
⑶不能,0
25. ⑴∵△AOB∽△BOC(相似比不为1),
∴ . 又∵OA=4, OB=3,
∴OC=32× = . ∴点C( , 0). …………………1分
设图象经过A、B、C三点的函数解析式是y=ax2+bx+c,
则c= -3,且 …………………2分
即
解得,a= , b= .
∴这个函数的解析式是y = x2+ x-3. …………………3分
⑵∵△AOB∽△BOC(相似比不为1),
∴∠BAO=∠CBO.
又∵∠ABO+ ∠BAO =90°,
∴∠ABC=∠ABO+∠CBO=∠ABO+∠BAO=90°. ………………4分
∴AC是△ABC外接圆的直径.
∴ r = AC= ×[ -(-4)]= . ………………5分
⑶∵点N在以BM为直径的圆上,
∴ ∠MNB=90°. ……………………6分
①. 当AN=ON时,点N在OA的中垂线上,
∴点N1是AB的中点,M1是AC的中点.
∴AM1= r = ,点M1(- , 0),即m1= - . ………………7分
②. 当AN=OA时,Rt△AM2N2≌Rt△ABO,
∴AM2=AB=5,点M2(1, 0),即m2=1.
③. 当ON=OA时,点N显然不能在线段AB上.
综上,符合题意的点M(m,0)存在,有两解:
m= - ,或1. ……………………8分
;同学们只要在九年级的数学期末复习过程中,抓住重点和常考点,数学测试中你一定会得心应手。
九年级数学上册期末质量检测试题
一.选择题(本大题共l2小题.在每小题给出的四个选项中.只有一项是正确的.请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分.)
1.下列图形是中心对称图形但不是轴对称图形的是( )
2、视力表对我们来说并不陌生.如图是视力表的一部分,其中开口向上的两个E之间的变换是( )
A.平移 B.旋转
C.对称 D.位似
3、计算:tan45°+sin30°=( )
(A)2 (B) (C) (D)
4.小明的讲义夹里放了大小相同的试卷共12页,其中语文4页、数学2页、英语6页,他随机地从讲义夹中抽出1页,抽出的试卷恰好是数学试卷的概率为( )
A. B. C. D.
5、如图,在 的正方形网格中, 绕某点旋转 ,得到 ,则其旋转中心可以是( )
A.点E B.点F
C.点G D.点H
6.把抛物线 向左平移1个单位,然后向上平移3个单位,则平移后抛物线的解析式为
A. B.
C. D.
7. 如图,△ABC的顶点都是正方形网格中的格点,则cos∠ABC等于( )
A、 B、 C、 D、
8、二次函数y=ax2+bx+c的图象如图所示,若点A(1,y1)、B(-6,y2)是它图象上的两点,则y1与y2的大小关系是( )
A.y1y2 D.不能确定
9.如图,AC是⊙O的直径,BD是⊙O的弦,EC∥AB交⊙O于E,则图中与 ∠BOC相等的角共有( )
A. 2个 B. 3个 C. 4个 D. 5个
10.如图,每个小正方形边长均为1,则下列图中的三角形(阴影部分)与左图中 相似的是 ( )
11.如图,⊙ 是△ABC的内切圆,切点分别是 、 、 ,已知∠ ,则∠ 的度数是( )
A.35° B.40°
C.45° D.70°
12.如图,半圆 的直径 ,与半圆 内切的小圆 ,与 切于点 ,设⊙ 的半径为 , ,则 关于 的函数关系式是( )
A. B.
C. D.
一 二 三 总分
19 20 21 22 23 24 25 26
二.填空题(本大题共5小题,共20分,只要求填写最后结果.每小题填对得4分.)
13.从1至9这9个自然数中任取一个数,这个数能被2整除的概率是.
14、如图,工程上常用钢珠来测量零件上小孔的直径,假设钢珠的直径是10mm,测得钢珠顶端离零件表面的距离为8mm,如图所示,则这个小孔的直径 是 mm.
15.已知圆锥的母线长为5 ,底面半径为3 ,则它的侧面积是 。
初三数学期末试卷
一、填空题(每小题3分,共36分)
1、方程3x2=x的解是 .
2、函数 中,自变量x的取值范围是.
3、在同一时刻的物高与影长成比例,如果一古塔在地面上的影长为40米,同时,高为1.5米的测竿的影长为2.5米,那么古塔的高是米 .
4、二次函数y=-2x2+bx+c经过点(1,0)和点(-1,-16),则此二次函数的解析式为 .
5、某一个反比例函数的图象在第二、第四象限内,请写出一个符合条件的函关系式:.
6、梯形的上底长4,中位线长6,则梯形的下底长是.
7、拖拉机开始工作时,油箱中有油24升,如果每小时耗油4升,那么油箱中剩余的油量y(升)与工作的时间x(时)之间的函数关系式是 .
8、如图,D、C、E三点共线,∠BAD=∠CAE,请结合现有图形,添加一个适当的条件:使得△ABC∽△ADE.
9、已知:点P(n,2n)在第一象限内,下面四个命题:(1)点P关于y轴对称的点P1的坐标是(n,-2n);(2)点P到原点的距离是 ;(3)直线y=-nx+2n不经过第三象限;(4)对于函数 ,当x<0时,y随x的增大而减小,其中真命题是 (只需填上所有真命题的序号).
10、如图,平行四边形ABCD中,E为BC边上一点,AE交BD于F,若BE:EC=4:5,则BF:FD= .
11、用换元法解分式方程 时,若设 ,可将分式方程化成的整式方程为
12、我校生物小组有一块等腰梯形形状的实验田,经测量知条对角线互相垂直,每条对角线的长是20m,则该实验田的面积是m2.
二、选择题(每小题3分,共24分)
13、已知关于x的方程x2+kx-6=0的一个根是2,设方程的另一个根是x1,则有()
A.x1=-3,k=-1 B.x1=-3,k=1C.x1=3,k=-5D.x1=3,k=5
14、下列图形中是中心对称而不是轴对称的图形是()
A.等边三角形 B.平行四边形 C.矩形 D.等腰梯形
15、如图,△ABC中,D、E分别是边AB、AC上的点,在下列条件中:
(1)∠AED=∠B;(2) 能够判断 △ADE与△ACB相似的是() A.(1)(2)B.(1)(3) C.(1)(2)(3) D.(1)
16、以1+ 和1- 为根,且二次项系数为1的一元二次方程是( )
A.x2+2x+1=0 B.x2+2x-1=0C.x2-2x+1=0 D.x2-2x-1=0
17、下列四个命题:(1)有一个角对应相等的两个等腰三角形相似;(2)如果两个三角形的对应边的比是3:2,那么这两个三角形的周长的比也是3:2;(3)顺次连结等腰梯形的各边中点所得的四边形是菱形;(4)对角线相等的四边形是等腰梯形,其中错误的命题个数是()A.1B.2C.3D.4
18、为绿化家乡,甲、乙两班参加植树活动,已知甲班每天比乙班多植5棵树,甲班植80棵树所用的天数与乙班植70棵树所用的天数相等,若设甲班每天植树x棵,则根据题意列出方程是()A. B. C. D.
19、学校美化一个三角形空地ABC,如图所示,计划把各边中点连线所围成的三角形区域内种上花,其余部分铺成草坪,那么种花的面积与草坪的面积之比是()A.1:4B.4:1C.1:3D.3:4
20、如图,将矩形纸条ABCD折叠,使点D与点B重合,EF为折痕,下列说法不一定成立的是()
A、AE=FCB.BE=BFC.△BEF∽△FD′BD.△AEB≌△D′FB
三、 解答题(满分60分)
21、(本题7分)
经过两年的连续治理,我市的大气环境有了明显改善,每平方公里的降尘量比原来降低了19%,求每年平均比上一年降低的百分率是多少?
22、(本题7分)
是否存在非负整数k,使得关于x的一元二次方程kx2-4x+3=0有实数根,若存在,请求出k的值;若不存在,请说明理由。
以上就是初三上册数学试卷的全部内容,九年级数学上册测试卷(满分:150分,时间:120分钟)一、选择题(本大题共10小题,每小题4分,共40分)1.抛物线 的顶点坐标是()A.(2,0)B.(-2,0)C.(0,2)D.(0,-2)2.若(2,5)、(4,5)是抛物线 上的两个点。