寻找生活中的数学问题?.那么,寻找生活中的数学问题?一起来了解一下吧。
现实生活中存在大量的数学问题,老师可以结合教学内容的特点将其引入课堂。如:我从生活中全家的休息日入手设计了这样一个生活情境:“5月份,圆圆的爸爸隔三天休息一天,妈妈每隔一天休息一天,圆圆周六、周日休息。三人要一走去看望外婆,选择哪些日子比较合适?”学生对这样的数学问题倍感亲切,因而兴趣大增,纷纷主动寻求答案。这时教师可以提议与学生一起玩涂色游戏,把爸爸、妈妈和圆圆的休息日涂上不同的颜色。在涂色的过程中,学生发现一些特殊的日子涂上了两种颜色,甚至有些日子涂上了三种颜色。强烈的好奇心和求知欲促使学生去思考和探索。通过观察,学生很快找出原因所在,原来这些特殊的日子是他们其中两个人或三个人的共同休息日。由共同的休息日就能轻而易举的引出“公倍数”这一数学问题。看似深奥的道理,就这样春风化雨般的慢慢融入了学生的心中,更重要的是使学生感受到数学来自生活实际。
望采纳,谢谢啦。
1.一个懒汉,三天打鱼,两天晒网.打鱼时,他每天只打4条鱼.一个夏天,他能打多少条鱼?
答案:夏天为5.6.7三个月,懒汉打鱼5天只打4*3=12(条),(31=30=31)/5=18......2所以懒汉在夏天打鱼数为12*18+4*2=224(条)
2.有2000只球,甲.乙两人作取球比赛,规则是两人轮流取,每人每次最少取1个,最多取5个,取到最后一个球的人为输.如果甲先取,如何取法才能保证取胜?
答案:甲先取1个球,然后乙无论取几个,甲接着取的球数应与乙所取的球数之和为6
3.下面这三个人中有一人说的是谎话,你能找出说谎话的人吗?
A;B说的是谎话.
B;C说的是谎话
C;你们良人肯定有说谎话的.
答案:B
只知道这些了.
简单给你列举些问题,更多问题等待你发现:
1烙饼问题:妈妈烙一张饼用两分钟,烙正、反面各用一分钟,锅里最多同时放两张饼,那么烙三张饼最少用几分钟?
2.袜子问题,抽屉里有5双不同颜色的袜子,没开灯,要拿出一双同色的袜子,从中最多需要摸出多少只?
3.鸡蛋问题:小张卖鸡蛋,一篮鸡蛋,第一个人来买走一半,小张再送他一个。第二个人又买走一半,小张又送他一个鸡蛋。第三个人又买一半的鸡蛋,小张再送他一个。第四个人来买一半,小张再送他一个,鸡蛋正好买完!小张总共有几个鸡蛋?
4桌子问题,一张方桌,砍掉一个角还有几个角?
5.切豆腐问题: 一块豆腐切三刀,最多能切几块
6切西瓜问题:三刀切7瓣,吃完剩下8块皮,怎么切?
7.竹竿问题:5米长的竹竿能不能通过一米高的门?
8,纸盒问题:边长一米的方盒子能不能放下1.5米的木棍?
9.时钟问题:12小时,时钟和分针重复多少次?
10.折纸问题:一张1毫米厚的纸,对折1000次,厚度有多高?
买东西 讨价还价 管理家务财政 算算时间 看看日历 炒股 基金
生活中无处不在 都要用到数学
航天啊,市场啊,等等
数学是开发思维的一门学科,同时也是学技术的基础,如物理,化学,机械,计算机,光电技术都需要数学做基础,数学不学好,学这些时就困难了.所以,数学一定要学好.
处处用到,你买东西时就是啊
抽屉原理和六人集会问题
“任意367个人中,必有生日相同的人。”
“从任意5双手套中任取6只,其中至少有2只恰为一双手套。”
“从数1,2,...,10中任取6个数,其中至少有2个数为奇偶性不同。”
......
大家都会认为上面所述结论是正确的。这些结论是依据什么原理得出的呢?这个原理叫做抽屉原理。它的内容可以用形象的语言表述为: “把m个东西任意分放进n个空抽屉里(m>n),那么一定有一个抽屉中放进了至少2个东西。” 在上面的第一个结论中,由于一年最多有366天,因此在367人中至少有2人出生在同月同日。这相当于把367个东西放入366个抽屉,至少有2个东西在同一抽屉里。在第二个结论中,不妨想象将5双手套分别编号,即号码为1,2,...,5的手套各有两只,同号的两只是一双。任取6只手套,它们的编号至多有5种,因此其中至少有两只的号码相同。这相当于把6个东西放入5个抽屉,至少有2个东西在同一抽屉里。 抽屉原理的一种更一般的表述为: “把多于kn个东西任意分放进n个空抽屉(k是正整数),那么一定有一个抽屉中放进了至少k+1个东西。” 利用上述原理容易证明:“任意7个整数中,至少有3个数的两两之差是3的倍数。”因为任一整数除以3时余数只有0、1、2三种可能,所以7个整数中至少有3个数除以3所得余数相同,即它们两两之差是3的倍数。 如果问题所讨论的对象有无限多个,抽屉原理还有另一种表述: “把无限多个东西任意分放进n个空抽屉(n是自然数),那么一定有一个抽屉中放进了无限多个东西。” 抽屉原理的内容简明朴素,易于接受,它在数学问题中有重要的作用。许多有关存在性的证明都可用它来解决。 1958年6/7月号的《美国数学月刊》上有这样一道题目: “证明在任意6个人的集会上,或者有3个人以前彼此相识,或者有三个人以前彼此不相识。” 这个问题可以用如下方法简单明了地证出: 在平面上用6个点A、B、C、D、E、F分别代表参加集会的任意6个人。如果两人以前彼此认识,那么就在代表他们的两点间连成一条红线;否则连一条蓝线。考虑A点与其余各点间的5条连线AB,AC,...,AF,它们的颜色不超过2种。根据抽屉原理可知其中至少有3条连线同色,不妨设AB,AC,AD同为红色。如果BC,BD,CD3条连线中有一条(不妨设为BC)也为红色,那么三角形ABC即一个红色三角形,A、B、C代表的3个人以前彼此相识:如果BC、BD、CD3条连线全为蓝色,那么三角形BCD即一个蓝色三角形,B、C、D代表的3个人以前彼此不相识。不论哪种情形发生,都符合问题的结论。 六人集会问题是组合数学中著名的拉姆塞定理的一个最简单的特例,这个简单问题的证明思想可用来得出另外一些深入的结论。这些结论构成了组合数学中的重要内容-----拉姆塞理论。从六人集会问题的证明中,我们又一次看到了抽屉原理的应用。
以上就是寻找生活中的数学问题的全部内容,.。