当前位置: 首页 > 所有学科 > 数学

初一上册数学,初一上册数学北师大版电子书

  • 数学
  • 2024-09-09

初一上册数学?初一上册数学必背公式是如下:一、长方形的周长=(长+宽)×2 ,C=(a+b)×2 二、正方形的周长=边长×4, C=4a 三、长方形的面积=长×宽 ,S=ab 四、正方形的面积=边长×边长 ,S=a.a= a^2 五、三角形的面积=底×高÷2 ,S=ah÷2 六、平行四边形的面积=底×高, S=ah 七、那么,初一上册数学?一起来了解一下吧。

初一上册数学网课免费人教版

=总结所学内容,进行学法的理性反思,强化并进行迁移运用,在训练中掌握学法。下面给大家带来一些关于初一数学上册知识点总结,希望对大家有所帮助。

初一数学上册知识点1

正负数

1.正数:大于0的数。

2.负数:小于0的数。

3.0即不是正数也不是负数。

4.正数大于0,负数小于0,正数大于负数。

(二)有理数

1.有理数:由整数和分数组成的数。包括:正整数、0、负整数,正分数、负分数。可以写成两个整之比的形式。(无理数是不能写成两个整数之比的形式,它写成小数形式,小数点后的数字是无限不循环的。如:π)

2.整数:正整数、0、负整数,统称整数。

3.分数:正分数、负分数。

(三)数轴

1.数轴:用直线上的点表示数,这条直线叫做数轴。(画一条直线,在直线上任取一点表示数0,这个零点叫做原点,规定直线上从原点向右或向上为正方向;选取适当的长度为单位长度,以便在数轴上取点。)

2.数轴的三要素:原点、正方向、单位长度。

3.相反数:只有符号不同的两个数叫做互为相反数。0的相反数还是0。

4.绝对值:正数的绝对值是它本身,负数的绝对值是它的相反数;0的绝对值是0,两个负数,绝对值大的反而小。

(四)有理数的加减法

1.先定符号,再算绝对值。

初一上册数学试卷可打印

初一上册数学必背公式是如下:

一、长方形的周长=(长+宽)×2 ,C=(a+b)×2

二、正方形的周长=边长×4, C=4a

三、长方形的面积=长×宽 ,S=ab

四、正方形的面积=边长×边长 ,S=a.a=a^2

五、三角形的面积=底×高÷2 ,S=ah÷2

六、平行四边形的面积=底×高, S=ah

七、梯形的面积=(上底+下底)×高÷2, S=(a+b)h÷2

八、圆的周长=圆周率×直径=圆周率×半径×2, c=πd=2πr

九、圆的面积=圆周率×半径×半径πr ^2

初一上册数学书人教版

初一数学是初中数学的基础,这篇文章我给大家总结归纳了初一上册数学课本的重要知识点,供同学们参考。

正负数

1.正数:大于0的数。

2.负数:小于0的数。

3.0即不是正数也不是负数。

4.正数大于0,负数小于0,正数大于负数。

有理数

1.定义:由整数和分数组成的数。包括:正整数、0、负整数,正分数、负分数。可以写成两个整之比的形式。

2.数轴:在数学中,可以用一条直线上的点表示数,这条直线叫做数轴。

3.相反数:相反数是一个数学术语,指绝对值相等,正负号相反的两个数互为相反数。

4.绝对值:绝对值是指一个数在数轴上所对应点到原点的距离。正数的绝对值是它本身,负数的绝对值是它的相反数;0的绝对值是0,两个负数,绝对值大的反而小。

5.有理数的加减法

同号相加,到相同符号,并把绝对值相加。异号相加,取绝对值大的加数的符号,并用较大的绝对值减去较小的绝对值。

6.有理数的乘法

两数相乘,同号得正,异号得负,并把绝对值相乘。

任何数与0相乘,积为0.例:0×1=0

7.有理数的除法

除以一个不为0的数,等于乘这个数的倒数。

两数相除,同号得正,异号得负,并把绝对值相除。0除

以任何一个不为0的数,都得0。

8.有理数的乘方

求n个相同因数乘积的运算,叫做乘方,乘方的结果叫做幂。

初一正负数计算题100道

数学透过抽象化和逻辑推理的使用,由计数、计算、量度和对物体形状及运动的观察而产生。这次我给大家整理了七年级上册数学总结归纳提纲,供大家阅读参考。

目录

七年级上册数学总结归纳提纲

数学学习方法

数学学习技巧

七年级上册数学总结归纳提纲

1.有理数:

(1)凡能写成 形式的数,都是有理数,整数和分数统称有理数.

注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;?不是有理数;

(2)有理数的分类:① ②

(3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;

(4)自然数?0和正整数;a>0?a是正数;a<0?a是负数;

a≥0?a是正数或0?a是非负数;a≤0?a是负数或0?a是非正数.

2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.

3.相反数:

(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;

(2)注意:a-b+c的相反数是-a+b-c;a-b的相反数是b-a;a+b的相反数是-a-b;

(3)相反数的和为0?a+b=0?a、b互为相反数.

(4)相反数的商为-1.

(5)相反数的绝对值相等

4.绝对值:

(1)正数的绝对值等于它本身,0的绝对值是0,负数的绝对值等于它的相反数;

注意:绝对值的意义是数轴上表示某数的点离开原点的距离;

(2)绝对值可表示为: 或 ;

(3) ; ;

(4)|a|是重要的非负数,即|a|≥0;

5.有理数比大小:

(1)正数永远比0大,负数永远比0小;

(2)正数大于一切负数;

(3)两个负数比较,绝对值大的反而小;

(4)数轴上的两个数,右边的数总比左边的数大;

(5)-1,-2,+1,+4,-0.5,以上数据表示与标准质量的差,绝对值越小,越接近标准。

初一上册数学人教版课程

初一数学上册知识点总结1

代数初步知识

1. 代数式:用运算符号+ - 连接数及表示数的字母的式子称为代数式.注意:用字母表示数有一定的限制,首先字母所取得数应保证它所在的式子有意义,其次字母所取得数还应使实际生活或生产有意义;单独一个数或一个字母也是代数式.

2.列代数式的几个注意事项:

(1)数与字母相乘,或字母与字母相乘通常使用 乘,或省略不写;

(2)数与数相乘,仍应使用乘,不用 乘,也不能省略乘号;

(3)数与字母相乘时,一般在结果中把数写在字母前面,如a5应写成5a;

(4)带分数与字母相乘时,要把带分数改成假分数形式,如a 应写成 a;

(5)在代数式中出现除法运算时,一般用分数线将被除式和除式联系,如3a写成 的形式;

(6)a与b的差写作a-b,要注意字母顺序;若只说两数的差,当分别设两数为a、b时,则应分类,写做a-b和b-a .

3.几个重要的代数式:(m、n表示整数)

(1)a与b的平方差是: a2-b2 ; a与b差的平方是:(a-b)2 ;

(2)若a、b、c是正整数,则两位整数是: 10a+b ,则三位整数是:100a+10b+c;

(3)若m、n是整数,则被5除商m余n的数是: 5m+n ;偶数是:2n ,奇数是:2n+1;三个连续整数是: n-1、n、n+1 ;

(4)若b0,则正数是:a2+b ,负数是: -a2-b ,非负数是: a2 ,非正数是:-a2 .

初一数学上册知识点总结2

一、方程的有关概念

1.方程:含有未知数的等式就叫做方程.

2. 一元一次方程:只含有一个未知数(元)x,未知数x的指数都是1(次),这样的方程叫做一元一次方程.例如: 1700+50x=1800, 2(x+1.5x)=5等都是一元一次方程.

3.方程的解:使方程中等号左右两边相等的未知数的值,叫做方程的解.

注:⑴ 方程的解和解方程是不同的概念,方程的解实质上是求得的结果,它是一个数值(或几个数值),而解方程的含义是指求出方程的解或判断方程无解的过程. ⑵ 方程的解的检验方法,首先把未知数的值分别代入方程的左、右两边计算它们的值,其次比较两边的值是否相等从而得出结论.

二、等式的性质

等式的性质(1):等式两边都加上(或减去)同个数(或式子),结果仍相等.

等式的性质(1)用式子形式表示为:如果a=b,那么a±c=b±c

等式的性质(2):等式两边乘同一个数,或除以同一个不为0的数,结果仍相等,等式的性质(2)用式子形式表示为:如果a=b,那么ac=bc;如果a=b(c≠0),那么ca=cb

三、移项法则: 把等式一边的某项变号后移到另一边,叫做移项.

四、去括号法则

1. 括号外的因数是正数,去括号后各项的符号与原括号内相应各项的符号相同.

2. 括号外的因数是负数,去括号后各项的符号与原括号内相应各项的符号改变.

五、解方程的一般步骤

1. 去分母(方程两边同乘各分母的最小公倍数)

2. 去括号(按去括号法则和分配律)

3. 移项(把含有未知数的项移到方程一边,其他项都移到方程的另一边,移项要变号)

4. 合并(把方程化成ax = b (a≠0)形式)

5. 系数化为1(在方程两边都除以未知数的系数a,得到方程的解x=a(b).

六、用方程思想解决实际问题的一般步骤

1. 审:审题,分析题中已知什么,求什么,明确各数量之间的关系.

2. 设:设未知数(可分直接设法,间接设法)

3. 列:根据题意列方程.

4. 解:解出所列方程.

5. 检:检验所求的解是否符合题意.

6. 答:写出答案(有单位要注明答案)

初一数学上册知识点总结3

(1)凡能写成 形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;p不是有理数;

(2)有理数的分类: ① 整数 ②分数

(3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;

(4)自然数 0和正整数;a0 a是正数;a0 a是负数;

a≥0 a是正数或0 a是非负数;a≤ 0 ? a是负数或0 a是非正数.

有理数比大小:

(1)正数的绝对值越大,这个数越大;

(2)正数永远比0大,负数永远比0小;

(3)正数大于一切负数;

(4)两个负数比大小,绝对值大的反而小;

(5)数轴上的两个数,右边的数总比左边的数大;

(6)大数-小数 0,小数-大数 0.

初一数学上册知识点总结4

第一章:丰富的图形世界

1、几何图形

从实物中抽象出来的各种图形,包括立体图形和平面图形。

以上就是初一上册数学的全部内容,七年级初一上册数学必背公式:一、三角函数公式 1、两角和公式 sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-sinBcosA cos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinB tan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)2、。

猜你喜欢