当前位置: 首页 > 所有学科 > 数学

高考数学解题技巧,高考数学解答题答题技巧

  • 数学
  • 2024-04-18

高考数学解题技巧?高考数学压轴题解题技巧 1、缺步解答 如果遇到一个很难的题目,将其分解为许多细小的步骤,尽力将这些步骤串联起来,然后一步一步的写下去,当遇到有些步骤中间的过程不是很明白的时候,可以通过猜测或者特殊方法,那么,高考数学解题技巧?一起来了解一下吧。

高考数学主观题答题技巧

高考数学必考题型及答题技巧如下:

1、三角函数题型

注意归一公式、诱导公式的正确性。转化成同名同角三角函数时,套用归一公式、诱导公式(奇变、偶不变;符号看象限)时,很容易因为粗心,导致错误。

2、圆锥曲线题型

注意求轨迹方程时,从三种曲线(椭圆、双曲线、抛物线)着想,椭圆考得最多,方法上有直接法、定义法、交轨法、参数法、待定系数法;注意直线的设法;注意判别式;注意韦达定理;注意弦长公式;注意自变量的取值范围等等。

3、统计与概率题型

掌握分类计数原理与分步计数原理,并能用它们分析和解决一些简单的应用问题;理解组合的意义,掌握组合数计算公式和组合数的性质,并能用它们解决一些简单的应用问题。注意计数时利用列举、树图等基本方法。

4、函数与导数题型

导数与解析几何或函数图象的混合问题是一种重要类型,也是高考(微博)中考察综合能力的一个方向,应引起注意。

5、导数极值题型

先求函数的定义域,正确求出导数,特别是复合函数的导数,单调区间一般不能并,用“和”或“,”隔开(知函数求单调区间,不带等号;知单调性,求参数范围,带等号)。

高考七十天能逆袭吗

2023年高考数学最后一题如下:

已知f(x)=ax-sinx,sinx/(cosx)^3,0

高考数学压轴题解题技巧

1、缺步解答

如果遇到一个很难的题目,将其分解为许多细小的步骤,尽力将这些步骤串联起来,然后一步一步的写下去,当遇到有些步骤中间的过程不是很明白的时候,可以通过猜测或者特殊方法,直接写出结论,然后再往后进行书写,知道写不出为止,虽然有一些不确定是否正确,但确实能拿到最大限度的分数了。

2、分步解答

可以把较难的环节从一般退到特殊,从抽象退到具体,从变量退到常量等,退到一个可以解决掉的简单问题,再有特例推广开来,达到对一般的解决,虽然可能拿不到全分,但多少是有分数的。

3、辅助解答

题目的解答或者说解析过程,出来主线的过程外,还需要许多辅助说明的东西,这些步骤也是有分数的,所以如果主要的过程走不动了,那么这些分支也可以加上,会有分数,比如作出准确的图象,将条件拓展延申,设未知数等。

历年高考真题

呵呵,你这个问题需要高手来回答了,我只是给你提个小建议,就是做题和总结,如果同样的问题,你能保证至多只错两次,再也不会错第三次,那你就到家了,就是说不怕错,只是错了之后要总结,要知道错在什么地方,并且掌握,要实在不行就背下来,这里是指一个类型题的解题思路,不是说只背一个题,碰到其他题,哪怕改改数就有可能不会的,呵呵。数学不是没有技巧,但努力多做题多想才是根本。见问题心喜,小说两句,希望对你有帮助。

2024高考数学解题技巧

高中数学学习是中学阶段承前启后的关键时期,不少学生升入高中后,能否适应高中数

学的学习,是摆在高中新生面前的一个亟待解决的问题,除了学习环境、教学内容和教学因

素等外部因素外,同学们还应该转变观念、提高认识和改进学法。下面我们就来听听清华大学附属中小学网校的老师针对如何学好高中数学的一些建议。

1、认识高中数学的特点

高中数学是初中数学的提高和深化,初中数学在教材表达上采用形象通俗的语言,研究对象多是常量,侧重于定量计算和形象思维,而高中数学语言表达抽象,逻辑严密,思维严谨,知识连贯性和系统性强。

2、正确对待学习中遇到的新困难和新问题

在开始学习高中数学的过程中,肯定会遇到不少困难和问题,同学们要有克服困难的勇气和信心,胜不骄,败不馁,有一种“初生牛犊不怕虎”的精神,愈挫愈勇,千万不能让问题堆积,形成恶性循环,而是要在老师的引导下,寻求解决问题的办法,培养分析问题和解决问题的能力。

3、要提高自我调控的“适教”能力

一般来说,教师经过一段时间的教学实践后,因自身对教学过程的不同理解和知识结构、思维特点、个性倾向、职业经历等原因,在教学方式、方法、策略的采用上表现出一定的倾向性,形成自己独特的、一贯的教学风格或特点。

高中数学考试技巧和答题技巧

解题技巧

一、三角函数题

注意归一公式、诱导公式的正确性(转化成同名同角三角函数时,套用归一公式、诱导公式(奇变、偶不变;符号看象限)时,很容易因为粗心,导致错误!一着不慎,满盘皆输!)。

二、数列题

1.证明一个数列是等差(等比)数列时,最后下结论时要写上以谁为首项,谁为公差(公比)的等差(等比)数列;

2.最后一问证明不等式成立时,如果一端是常数,另一端是含有n的式子时,一般考虑用放缩法;如果两端都是含n的式子,一般考虑数学归纳法(用数学归纳法时,当n=k+1时,一定利用上n=k时的假设,否则不正确。利用上假设后,如何把当前的式子转化到目标式子,一般进行适当的放缩,这一点是有难度的。简洁的方法是,用当前的式子减去目标式子,看符号,得到目标式子,下结论时一定写上综上:由①②得证;

3.证明不等式时,有时构造函数,利用函数单调性很简单(所以要有构造函数的意识)。

三、立体几何题

1.证明线面位置关系,一般不需要去建系,更简单;

2.求异面直线所成的角、线面角、二面角、存在性问题、几何体的高、表面积、体积等问题时,要建系;

3.注意向量所成的角的余弦值(范围)与所求角的余弦值(范围)的关系(符号问题、钝角、锐角问题)。

以上就是高考数学解题技巧的全部内容,高考数学必考题型及答题技巧如下:1、 三角函数题型 注意归一公式、诱导公式的正确性。转化成同名同角三角函数时,套用归一公式、诱导公式(奇变、偶不变;符号看象限)时,很容易因为粗心,导致错误。2、。

猜你喜欢