高中数学题大全?直线与平面(一)�6�1练习题 一、选择题 (1)空间三条直线,两两相交,则由它们可确定平面的个数为 [ ]A.1 B.3 C.1或3 D.1或4 (2)异面直线a,b分别在两个平面α,β内,那么,高中数学题大全?一起来了解一下吧。
1、连接B1C,交BC1于O,连接DO
因为三棱柱ABC-A1B1C1中侧棱AA1垂直底面ABC,AA1//BB1
即BB1垂直底面ABC
所以BB1垂直于BC,即四边形BB1C1C是矩形
则CO=B1O
又AB垂直BC,D为AC的中点
则CD=DA
所以在三角形AB1C中,DO//AB1
又DO在面BC1D内
则AB1平行平面BC1D
2、过B做BH垂直于AC,交AC于H
AB垂直BC
则AC=根号(2^2+3^2)=根号13,AD=1/2AC=1/2*根号13
因为侧棱AA1垂直底面ABC,则AA1垂直BH
则BH垂直于面AA1C1C
而面AA1C1D在面AA1C1C内
所以BH垂直于面AA1C1D,即BH是四棱锥B-AA1C1D的高
又BH=AB*BC/AC=6/根号13
底面积AA1C1D面积S=(AD+A1C1)*AA1/2=3/2*根号13
则四棱锥B-AA1C1D的体积V=1/3*S*BH=3
连接b1c交于O点,连接do,do为三角形的中位线,和底边平行。命题一得证。
第二题 先算出四棱 锥的高bd=6/√13.
再算出四棱锥底面面积并乘高和1/3得到体积
( √13.+√13/2)*2*1/2*6/√13*1/3=3
. 望采纳。
1、下面题目中每一个汉字代表一个数字,同样的汉字代表同样的数字,不同的汉字代表不同的数字,当各代表什么数字时,下列汉字成立?
北京奥运
京奥运
奥运
+运
------------
2 008
2、十棵树,种六排,每排三棵,怎么种?
1、连接B1C交BC1与o点
连接DO,
因为BCC1B1是平行四边形,所以O是B1C的中点,
又因为D是AC的中点,所以在△ACB1中,DO∥AB1
又因为DO在△BC1D中,
所以AB1∥平面BC1D,即证毕。
2、三棱柱ABC-A1B1C1的体积是V1=1/2AB*BC*AA1=1/2*2*3*2=6
三棱锥B-A1B1C1的体积是V2=1/3*1/2*A1B1*B1C1*BB1=1/3*1/2*2*3*2=2
所以所求四棱锥B-AA1C1D的体积V=V1-V2=6-2=4
证明:连接B1C,交BC1于O,连接OD,则OB为1C中点,
又在三角形AB1C中,D为AC的中点,故OD为中位线
OD平行AB1从而AB1平行平面BC1D
解:过B做BE垂直AD于E,由于侧棱AA1垂直底面ABC,则AA1垂直BE
所以BE垂直平面AA1C1D,AA1C1D的面积=(A1C1+AD)*AA1/2
四棱锥B-AA1C1D的体积=AA1C1D的面积*BE/3=(A1C1+AD)*AA1*BE/6
在三角形ABC中,AB垂直BC,BE垂直AD,AA1=AB=2,BC=3,且A1C1=AC=2AD,得
AC=根号13,BE=6/根号13四棱锥B-AA1C1D的体积=3
以上就是高中数学题大全的全部内容,1.判断下列数列中,哪些是等差数列,是等差数列的,请写出公差d (1)1 , 11 , 121 (2)1 , 2 , 1 (3)lg2 , lg4 , lg5 (4)2 , 2 ,2 (4)是等差数列。