当前位置: 首页 > 所有学科 > 数学

世界上最难的数学公式,世界上最复杂的公式

  • 数学
  • 2023-06-18
目录
  • 世界上最复杂的公式
  • 大学最难的数学方程式
  • 为什么数学学到最后都是字母
  • 10道变态难数学题
  • 数学害死过多少人

  • 世界上最复杂的公式

    我在讲流体动力学时给学生讲过,先讲欧拉方程,再讲纳维一斯托克斯方程,它要考虑棚晌橘到流体谨腊的重度粘度摩擦和流场时变性,即马赫数雷诺数佛罗底数和斯托哈诺数,如此才能相似原理风洞等,这些对搞流体以及飞行体汽车船舶设计人员是基本知识,只是这些公式的建立计算仿真等链团费些事,要有相应的条件。

    大学最难的数学方程式

    1如果题目是1+2+3+4+5+...+N+N*1+Nx2+Nx3+...+NxN,那么是=(1+N)*(简如纤1+N)*N/2

    2.如果拦仿题目是1+2+3+4+5+...N-1+N+Nx2+Nx3+...+NxN,那橡链么是=(1+N)*(1+N)*N/2-N

    为什么数学学到最后都是字母

    最复杂的数学公式如下:

    数学公式含义:

    是人们在研究自然界物与物之间时发现的一些联系,并通过一定的方式表达出来的一种表达方法。是表示自然界不同事物之数量之间的或等或不等的联系,它确切的反映了事物内部和外部的关系,是我们从一种事物到达另一种事物的依据,使我们更好的理解败凳缺事物的本质和内涵。

    把单元格A1,B1,C1分别输入a,b,c。察辩在D1输入算式=A1+B1+C1。当你输入abc后,D1自动显示它们的和。

    初等数学研究的是常量与匀变量,高等数学研究的是非匀变量。高等数学(它是几门课程的总称)是理、粗旦工科院校一门重要的基础学科,也是非数学专业理工科专业学生的必修数学课,也是其它某些专业的必修课。

    高数课程特点:

    通常认为,高等数学是由17世纪后微积分学,较深入的代数学、几何学以及它们之间的交叉内容所形成的一门基础学科。相对于初等数学和中等数学而言,学的数学较难,属于大学教程,因此常称“高等数学”,在课本常称“微积分”,理工科的不同专业。

    文史科各类专业的学生,学的数学稍微浅一些,文史科的不同专业,深浅程度又各不相同。研究变量的是高等数学,可高等数学并不只研究变量。至于与“高等数学”相伴的课程通常有:线性代数(数学专业学高等代数),概率论与数理统计(有些数学专业分开学)。

    10道变态难数学题

    相比起黎曼猜想、费马大定理、哥德巴赫猜想等全球知名的难题,纳维-斯托克斯方程的存在感很低,即使在世界千禧年七大难题里,也很少会有人提及,最重要的原因就是,这个难题实在是不太好理解,尤其对于普通人而言,甚至名列榜首的P/NP问题普通人都可以揣摩到一些,但就是很难理解纳维—斯托克斯方程,这也是为什么民科很少触及这个问题的原因。

    大家可以看看上对这个难题的描述:

    起伏的指销散波浪跟随着我们的正在湖中蜿蜒穿梭的小船,湍急的气流跟随着我们的现代喷气式飞机的飞行。数学家和物理学家深信,无论是微风还是湍流,都可以通过理解纳维-斯托克斯方程的解,来对它们进行解释和预言。虽然这些方程是19世纪写下的,我们对它们的理解仍然极少。挑战在于对数学理论作出实质性的进展,使我们能解开隐藏在纳维叶-斯托克斯方程中的奥秘。

    没头没尾,你甚至在这段话里都很难揣测出这个难题究竟描述的是什么问题,流露出一股玄学的问题,今天我们就来聊聊纳维-斯托克斯方程。

    这个方程并不是一个人提出来的,1775年,著名数学家欧拉,对,没有错就是数学界四大天王欧拉,他如今又来掺和流体力学了,他在《流体运动的一般原理》一书中根据无粘性流体运动时流体所受的力和动量变化从而推导出了一组方程。

    方程如下:(ax?D?+bxD+c)y=f(x)(只是其中一种形式,还有泛函极值条件的微分表达式等),这是属于无粘性流体动力学(理想流体力学)中最重要的基本方程,是指对无粘性流体微团应用牛顿第二定律得到的运动微分方程,它描述理想流体的运动规律。奠定了理想流体力学基础。

    粘性流体是指粘性效应不可忽略的流体。自然唯氏界中的实际流体都是具有粘性,所以实际流体又称粘性流体,是指流体质点间可流层间因相对运动而产生摩擦力而反抗相对运动的性质。

    1821年,著名工程师纳维推广了欧拉的流体运动方程,考虑了分子间的作用力,从而建立了流体平衡和运动的基本方程。方程中只含有一个粘性常数。

    1845年斯托克斯从连续统的模型出发,改进了他的流体力学运动方程,得到有两个粘性常数的粘性流体运动方程的直角坐标分量形式,这就是后世所说的纳维-斯托克斯方程。

    纳维-斯托克斯方程有很多种表达形式

    解释纳维-斯托克斯方程的细节之前,首先,必须对流体作几个假设。第一个是流体是连续的。这强调它不包含形成内部的空隙,例如,溶解的气体气泡,而且它不包含雾状粒子的聚合。另一个必要的假设是所有涉及到的场,全部是可微的,例如压强P,速度v,密度ρ,温度Q等等。该方程从质量,动量守恒,和能量守恒的基本原理导出。

    对此,有时必须考虑一个有限的任意体积,称为控制体积,在其上这些原理很容易应用。该有限体积记为ω,而其表面记为?ω。该控制体积可以在空间中固定,也可能随着流体运动。

    可以说纳维-斯托克斯方程是众多科学家和工程师的推动下产生的,是一组描述像液体和空气这样的流体物质的方程。这些方程建立了流体的粒子动量的改变率(力)和作用在液体内部的压力的变化和耗散粘滞力(类似于摩擦力)以及引力之间的关系。这些粘滞力产生于分子的相互作用,能告诉我们液体有多粘。这样,纳维-斯托克斗燃斯方程描述作用于液体任意给定区域的力的动态平衡。

    在流体力学中,有很多方程,但很多方程都和纳维尔-斯托克斯方程有着联系,纳维-斯托克斯方程可以说描述了流体领域的大部分条件,当然了,该方程也有其适用范围,该方程只适用于牛顿流体。

    什么是牛顿流体呢?简单说就是:任一点上的剪应力都同剪切变形速率呈线性函数关系的流体。一般高黏度的流体是不满足这种关系的,说明牛顿流体和非牛顿流体有个简单的例子就是大家熟知的虹吸现象。在低黏度下,虹吸要进行下去,吸取口必须在页面以下,但非牛顿流体的高黏度流体下,吸取口哪怕高于液面,其虹吸依然能够进行,因为黏度太大了。

    而对于工程应用来说,大部分情况还是处理牛顿流体,或者可以近似为牛顿流体。可以说,该方程在流体力学中起着基础性的作用,但也起着决定性的作用。

    关于这组方程所涉及的难题就是,如何用数学理论阐明这组方程。对,甚至用数学理论阐明用于描述奇特黑洞的爱因斯坦场方程都会比阐述纳维-斯托克斯方程更简单一些。

    所以有关纳维-斯托克斯方程其解的数学性质有关的数学问题被称为纳维-斯托克斯方程解的存在性与光滑性。

    尽管纳维-斯托克斯方程可以描述空间中流体(液体或气体)的运动。纳维-斯托克斯方程式的解可以用到许多实际应用的领域中。比如可以运用到模拟天气,洋流,管道中的水流,星系中恒星的运动,翼型周围的气流。它们也可以用于飞行器和车辆的设计,血液循环的研究,电站的设计,污染效应的分析等等。

    不过目前对于纳维-斯托克斯方程式解的理论研究还是不足,尤其纳维-斯托克斯方程式的解常会包括紊流。

    紊流又称湍流,是流体的一种流动状态。当流速很小时,流体分层流动,互不混合,称为层流,或称为片糖;逐渐增加流速,流体的流线开始出现波状的摆动,摆动的频率及振幅随流速的增加而增加,此种流况称为过渡流;当流速增加到很大时,流线不再清楚可辨,流场中有许多小漩涡,称为湍流,又称为乱流、扰流或紊流。(飞机最怕遇见湍流)

    虽然紊流在科学及工程中非常的重要,但是紊流无序性、耗能性、 扩散性。至今仍是未解决的物理学问题之一。

    另外,许多纳维-斯托克斯方程式解的基本性质也都尚未被证明。因为纳维-斯托克斯方程依赖微分方程来描述流体的运动。不同于代数方程,这些方程不寻求建立所研究的变量(譬如速度和压力)的关系,而寻求建立这些量的变化率或通量之间的关系。用数学术语来讲,这些变化率对应于变量的导数。其中,最简单情况的0粘滞度的理想流体的纳维-斯托克斯方程表明,加速度(速度的导数,或者说变化率)是和内部压力的导数成正比的。

    这表示对于给定的物理问题,至少要用微积分才可以求得其纳维-斯托克斯方程的解。实用上,也只有最简单的情况才能用这种方法获得已知解。这些情况通常涉及稳定态(流场不随时间变化)的非紊流,其中流体的粘滞系数很大或者其速度很小(低雷诺数)。

    对于更复杂的情形,例如厄尔尼诺这样的全球性气象或机翼的升力,纳维-斯托克斯方程的解必须借助计算机才能求得。这个科学领域称为计算流体力学。

    例如数学家就尚未证明在三维座标,特定的初始条件下,纳维-斯托克斯方程式是否有符合光滑性的解。也尚未证明若这样的解存在时,其动能有其上下界。

    而千禧年关于纳维-斯托克斯方程的问题则更为困难,它给出的问题是:在三维的空间及时间下,给定一起始的速度场,存在一向量的速度场及纯量的压强场,为纳维-斯托克斯方程式的解,其中速度场及压强场需满足光滑及全局定义的特性。

    注意,世界千禧年七大数学问题中每个数学问题的陈述除了P/NP问题之外,都是由此领域或者在此问题上做出过成果的菲尔兹奖得主进行撰写,确保能够精炼概括出问题,从而保证问题的严谨性,而P/NP问题因为涉及到计算机方面,所以陈述是由图灵奖得主斯蒂芬·库克撰写,纳维-斯托克斯方程存在性与光滑性。查尔斯·费夫曼撰写的陈述

    如果你没有办法理解,你可以简单理解成,科学家希望可以找出纳维-斯托克斯方程的通解,也就是说证明方程的解总是存在。换句话说,这组方程能否描述任何流体,在任何起始条件下,未来任一时间点的情况。

    一组用数学理论阐明都困难的方程组,你还需要去证明这个方程的解总是存在。这让许多科学家为之崩溃。

    目前来说,目前只有大约一百多个特解被解出来。而数学家让·勒雷在1934年时证明了所谓纳维-斯托克斯问题弱解的存在,此解在平均值上满足纳维-斯托克斯问题,但无法在每一点上满足。

    而自此之后,关于纳维-斯托克斯问题的研究就停滞不前,所以它也被称为最难的数学或物理公式,直到

    80 年以后,陶哲轩在纳维-斯托克斯问题上发表了文章《Finite time blowup for an averaged

    three-dimensional Navier-Stokes

    equation》,他的主要目的是将纳维-斯托克斯方程全局正则性问题的超临界状态屏障形式化。粗略地说,就是抽像地建立纳维-斯托克斯方程的全局正则性是不可能的。陶哲轩认为,相信抽象方法(基於能量等式的泛函分析方法比如半群等)和纯粹的调和分析应该是不够用的,可能必须要用到NS方程的特殊几何比如vorticity,这篇文章就是构造了一个类似于NS方程、但不是原先的NS方程的一个反例。

    他说,想象一下假如有人异常聪明,纯粹用水创造了一台机器,它并不由杆和齿轮而是由相互作用的水流构成。陶边说着边像魔术师般用手在空中比划出一个形状。想象一下这台机器可以copy出另一个更小速度更快的自己,接着这个更小速度更快的又copy出另一个,不断继续下去,直到在一个微小的空间达到了无限的速度,从而引发了爆炸。陶笑着说到他并不是提议真的创建这样一台机器,这只是一个思想实验,就像爱因斯坦导出狭义相对论。但是,陶解释到,如果可以从数学上证明在原则上没有什么可以阻止这个奇妙装置运转,那么这便意味着水实际上会爆炸。而且在这个过程中,他也会解决纳维-斯托克斯方程的存在性与光滑性的问题。

    无论怎么样来说,在不断解决纳维-斯托克斯方程的过程中,无数新的数学数学方法随之诞生,引领着数学不断前进发展。这就是这些难题猜想存在的意义。

    数学害死过多少人

    同学这个问题问的就很没有水平了,所谓难是指我戚郑们不会,如果大家都会了那当然就属于简单渗陆的问题了。既然是公式那肯定有被验证过n回,我们只需要套丛仔顷数字进去运算,谈不上难与易吧。

    猜你喜欢