2016高考题数学?6.秦九韶是我国南宋时期的数学家,普州(现四川省安岳县)人,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法.如图所示的程序框图给出了利用秦九韶算法求某多项式值的一个实例,那么,2016高考题数学?一起来了解一下吧。
第一道大题:一定是数列或者三角函数第二道:统计或概率,一般枝扰来说统计简单,概率较复杂,也有可猛祥旦能是两者综合第三道:立体几何,这是必考题,每年高考一定会有,所以分一定要拿到,理科的话就套用空间向量,很简单第四道:解析几何,较难,但是第一个问,是应该可以解决的. 第五道:俗称压轴题,毫宴友无疑问函数及其应用,但是没必要全做出来,有人说数学卷做到最后一道大题最后一个问的,有百分之九十九是傻子,剩下的是天才
上指搜一步已经把端点值求了。而且单调区间这样的开闭都没有关系,就是一个点或穗,在开头和末衫逗卜尾,不会影响单调性。
1.选择题除了5、9、10、11、12思考的多一些,计算稍多点,其余的选择题是比较简单的,都是一些基础知识的考察。2.填空题也是基础知识的考察。3.17题,只要设出等差数列的公差d,等比数列的公比q,代空运运入已知条件,很容易求得d和q值,从而数列通项问题也解决了。18、19、20这三题可以说是中等难度题型,基础好一点的一般都能做全对的。21题这个事比较基础的题型,个人感觉可能还没有18、19、20的难度大,稍微小一些吧.(1)问考的知识点有:求导数,然后对导数进行探讨:大于0时,单调递增,导数小于斗梁0时,单调递减。(2)问也不是很难,设出这样的p点坐标,再利用在某点处的导数值等于该点的斜率,问题估计就迎刃而解了。22题虽然一般我们认为是压轴题,但是这个题第一个问,也并不是很难,一般还是可以做的。(具体就不写了),第二问可能才是相对有些难度,但是跟着题目思路,还是可以做出来的。总之这份试卷,个人感觉是比较简单的,很注重考生的基础知识是否牢固、扎实,如果基础扎实、牢固,并且多一些解题上的技巧,做这份试卷还是可以拿到高分的。最后提醒:参加高考的同学在后面的考试中,之前考的理想的继续努力,考的不理想也没有关系,毕竟后面的努力考试可以赶上,不要灰心气馁。
理科
1.设集合,Z为整数集,则中元素的个数是[]
2.设i为虚数单位,则的展开式中含x4的项为[ ]
3.为了得到函数的图象,只需把函数的图象上所有的点[]
4.用数字1,2,3,4,5组成没有重复数字的五位数,其中奇数的个数为[]
5.某公司为激励创新,计划逐年加大研发资金投入.若该公司2015年全年投入研发资金130万元,在此基础上,每年投入的研发资金比上一年增长12%,则该公司全年投入的研发资金开始超过200万元的年份是[ ]
(参考数据:lg 1.12≈0.05,lg 1.3≈0.11,lg2≈0.30)
6.秦九韶是我国南宋时期的数学家,普州(现四川省安岳县)人,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法.如岁镇图所示的程序框图给出了利用秦九韶算法求某多项式值的一个实例,若输入n,x的值分别为3,2,判断出v的值为[]
7.设p:实数x,y满足(x–1)2–(y–1)2≤2,q:实数x,y满足 则p是q的[]
8.设O为坐标原点,P是以F为焦点的抛物线 上任意一点,M是线段PF上的点,且
=2,则直线OM的斜率的最大值为[]
9.设直线l1,l2分别是函数f(x)= 图象上点P1,P2处的切线,l1与l2垂直相交于点P,且l1,l2分别与y轴相交于点A,B,则△PAB的面积的取值范围是[ ]
10.在平面内,定点A,B,C,D满足 ==,﹒=﹒=﹒=-2,动点P,M满足 =1,=,则的最大值是[]
11.cos2–sin2= .
12.同时抛掷两枚质地均匀的硬币,当至少有一枚硬币正面向上时,就说这次试验成功,则在2次试验中成功次数X的均值是[ ]
13.已知三棱镜的四个面都是腰长为2的等腰三角形,该三棱锥的正视图如图所示,则该三棱锥的体积是[]
14.已知函数f(x)是定义在R上的周期为2的奇函数,当0<x<1时,f(x)=,则f()+ f(1)=
15.在平面直角坐标系中,当P(x,y)不是原点时,定义P的“伴随点”为;
当P是原点时,定义P的“伴随点“为它自身,平面曲线C上所有点的“伴随点”所构成的曲线定义为曲线C的“伴随曲线”.现有下列命题:
①若点A的“伴随点”是点,则点的“伴随点”是点A
②单位圆的“伴随曲线”是它自身;
③若曲线C关于x轴对称,则其“伴随曲线”关于y轴对称;
④一条直线的“伴随曲线”是一条直线.
其中的真命题是_____________(写出所有真命题的序列).
16.(本小题满分12分)
我空雀启国是世界上严重缺水的国家,某市政府为了鼓励居民节约用水,计划调整居民生活用水收费方案,拟确定一个合理的月用水量标准(吨)、一位居民的月用水量不超过的部分按平价收费,超出的部分按议价收费.为了了解居民用水情况,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照[0,0.5),[0.5,1),…,[4,4.5)分成9组,制成了如图所示的频率分布直方图.
(I)求直方图中a的值;
(II)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,并说明理由;
(III)若该市政府希望使85%的居民每月的用水量不超过标准(吨),估计的值,并说明理由.
17.(本小题满分12分)
在△ABC中,角A,B,C所对的边分别是a,b,c,且.
(I)证明:;
(II)若,求.
18.(本小题满分12分)
如图,在四棱锥P-ABCD中,AD∥BC,ADC=PAB=90°,BC=CD=AD.E为边AD的中点,异面直线PA与CD所成的角为90°.
(I)在平面PAB内找一点M,使得直线CM∥斗如平面PBE,并说明理由;
(II)若二面角P-CD-A的大小为45°,求直线PA与平面PCE所成角的正弦值.
19.(本小题满分12分)
已知数列{}的首项为1, 为数列{}的前n项和, ,其中q>0, .
(I)若 成等差数列,求an的通项公式;
(ii)设双曲线 的离心率为 ,且 ,证明:.
20.(本小题满分13分)
已知椭圆E:的两个焦点与短轴的一个端点是直角三角形的三个顶点,直线l:y=-x+3与椭圆E有且只有一个公共点T.
(I)求椭圆E的方程及点T的坐标;
(II)设O是坐标原点,直线l’平行于OT,与椭圆E交于不同的两点A、B,且与直线l交于点P.证明:存在常数λ,使得∣PT∣2=λ∣PA∣·∣PB∣,并求λ的值.
21.(本小题满分14分)
设函数f(x)=ax2-a-lnx,其中
(I)讨论f(x)的单调性;
(II)确定a的所有可能取值,使得在区间(1,+∞)内恒成立(e=2.718…为自然对数的底数).
画做猛槐知歼图像,看交点,那些交点关于(0,1)对称,故选B。今年的数学全国二卷算是简单的了,选择填空都没有纯友难题
以上就是2016高考题数学的全部内容,第一道大题:一定是数列或者三角函数第二道:统计或概率,一般来说统计简单,概率较复杂,也有可能是两者综合第三道:立体几何,这是必考题,每年高考一定会有,所以分一定要拿到,理科的话就套用空间向量。