数学八年级下册书答案?【答案】: 1.证明:∵四边形ABCD是矩形,∴AC=BD,AO=BO=CO=DO.∵AE=BF=CG=DH,∴OE=OF=OG=OH,∴四边形EFGH是平行四边形(对角线互相平分的四边形是平行四边形).∵OE+OG=OF+OH,那么,数学八年级下册书答案?一起来了解一下吧。
第1章 平行线【1.1】1.∠4,∠4,∠2,∠5 2.2,1,3,BC 3.C4.∠2与∠3相等,∠3与∠5互补.理由略5.同位角是∠BFD 和∠DEC,同旁内角是∠AFD 和∠AED6.各4对.同位角有∠B 与∠GAD,∠B 与∠DCF,∠D 与∠HAB,∠D 与∠ECB;内错角有∠B 与∠BCE,∠B 与∠HAB,∠D 与∠GAD,∠D 与∠DCF;同橘渗旁内角有∠B 与∠DAB,∠B 与∠DCB,∠D 与∠DAB,∠D与∠DCB
【1.2(1)】1.(1)AB,CD (2)∠3,同位角相等,两直线平行 2.略3.AB∥CD,理由略 4.已知,∠B,2,同位角相等,两直线平行5.a与b平行.理由略6.DG∥BF.理由如下:由DG,BF 分别是∠ADE 和∠ABC 的角平分线,得∠ADG=12∠ADE,∠ABF= 12 ∠ABC,则∠ADG=∠ABF,所以由同位角相等,两直线平行,得DG∥BF
【1.2(2)】1.(1)2,4,内错角相等,两直线平行 (2)1,3,内错角相等,两直线平行2.D3.(1)a∥c,同位角相等,两直线平行 (2)b∥c,内错角相等,两直线平行(3)a∥b,因为∠1,∠2的对顶角是同旁内角且互补,所以两直线平行4.平行.理由如下:由∠BCD=120°,∠CDE=30°,可得∠DEC=90°.所以
∠DEC+∠ABC=180°,AB∥DE (同旁内角互补,两直线平行)5.(1)180°;AD;BC(2)AB 与CD 不一定平行.若加上条件∠ACD=90°,或∠1+∠D=90°等都可说明AB∥CD6.AB∥CD.由已知可得∠ABD+∠BDC=180° 7.略
【1.3(1)】1.D 2.∠1=70°,∠2=70°,∠3=110°3.∠3=∠4.理由如下:由∠1=∠2,得DE∥BC(同位角相等,两直线平行),∴ ∠3=∠4(两直线平行,同位角相等)4.垂直的意义;已知;两直线平行,同位角相等;305.β=44°. ∵ AB∥CD, ∴ α=β6.(1)∠B=∠D (2)由2x+15=65-3x解得x=10,所以∠1=35°
【1.3(2)】1.(1)两直线平行,同位角相等 (2)两直线平行,内错角相等2.(1)× (2)× 3.(1)DAB
(2)BCD4.∵ ∠1=∠2=100°, ∴ m∥n(内错角相等,两直线平行).∴ ∠4=∠3=120°(两直线平行,同位角相等)5.能.举例略6.∠APC=∠PAB+∠PCD.理由:连结AC,则∠BAC+∠ACD=180°.∴
∠PAB+∠PCD=180°-∠CAP-∠ACP.10.(1)B′E∥DC.理由是∠AB′耐伍配E=∠B=90°=∠D又
∠APC=180°-∠CAP-∠ACP, ∴ ∠APC=∠PAB+∠PCD(2)由B′E∥DC,得∠BEB′=∠C=130°.
【1.4】∴ ∠AEB′=∠AEB=12∠BEB′=65°1.2第2章 特殊三角形2.AB 与CD 平行.量得线段BD 的长约为2cm,所以两电线杆间的距离约为120m
【2.1】3.15cm 4.略5.由m∥n,AB⊥n,CD⊥n,知AB=CD,∠ABE=∠CDF=90°.1.B∵ AE∥CF, ∴ ∠AEB=∠CFD. ∴ △AEB≌△CFD,2.3个;△ABC,△ABD,△ACD;∠ADC;∠DAC,∠C;AD,DC;AC∴ AE=CF3.15cm,15cm,5cm 4.16或176.AB=BC.理 由 如 下:作 AM ⊥l5.如图,答案不,图中点C1,C2,C3均可2于 M,BN ⊥l3于 N,则 △ABM ≌△BCN,得AB=BC6.(1)略 (2)CF=1昌指5cm7.AP 平分∠BAC.理由如下:由 AP 是中线,得 BP=复习题PC.又AB=AC,AP=AP,得△ABP≌△ACP(SSS).1.50
2.(1)∠4 (2)∠3 (3)∠1 ∴ ∠BAP=∠CAP(第5题)3.(1)∠B,两直线平行,同位角相等
【2.2】(2)∠5,内错角相等,两直线平行(3)∠BCD,CD,同旁内角互补,两直线平行1.(1)70°,70°
(2)100°,40° 2.3,90°,50° 3.略4.(1)90° (2)60°4.∠B=40°,∠C=40°,∠BAD=50°,∠CAD=50° 5.40°或70°5.AB∥CD.理由:如图,由∠1+∠3=180°,得6.BD=CE.理由:由AB=AC,得∠ABC=∠ACB.(第又∵∠3=72°=∠25题) ∠BDC=∠CEB=90°,BC=CB,∴ △BDC≌△CEB(AAS)
BD=CE6.由AB∥DF,得∠1=∠D=115°.由BC∥DE,得∠1+∠B=180
每念并道错的 八年级 数学课本习题做三遍。第一遍:讲评时;第二遍:一周后;第三遍:考试前。以下是我为大家整理的北师大版八年级下册数学课本的答案,希望你们喜欢。
八年级下册数学课本北师大版答案(一)
第20页练习
1.解:(1)假命题.如图1-2-34所示,
在Rt△ABC与Rt△A'B'C′中,∠A=∠A'=90°,
∠B=∠C=45°=∠B′=∠C′,AB= AC≠A'B′=A'C′,则Rt△ABC与Rt△A'B'C′不全等,
(2)真命题,
已知:如图1-2-35所示,∠C=∠C′=90°,∠A=∠ A′,且AB=A'B'.
求证:Rt△A BC≌Rt△A'B'C’.
证明:
∵∠C=∠C′= 90°,∠A=∠A′,且AB=A'B',
∴ Rt△ABC≌Rt△A'B'C’(AAS).
(3)真命题,
已知:如图1-2-35所示,∠C=∠C′=90°,AC=A'C',BC=B'C'.
求证:Rt△ABC≌Rt△A'B'C′.
证明:
∵AC=A'C′,∠C=∠C′=90°,BC=B′C′,
∴Rt△ABC≌Rt△A′B'C′(SAS).
(4)真命题
已知:如图1-2-36所示,∠C=∠C′=90°,
AC=A′C′,中线AD=A'D'.
求证:Rt△ABC≌RtAA'B'C′.
证明:
∵∠C=∠C′=90°,AD=AD ′,AC=A'C′,
∴Rt△ACD≌Rt△A'C'D'(HL).
∴DC=D'C’.
∵BC=2D,B'C'=2D'C',
∴BC=B'C′
∴Rt△ABC≌Rt△A'B'C(SAS).
2.解:相等理由:
∵AB=AC=12m.
∴由三点A,B,C 构成的三角形是等腰三角形.
又∵AO⊥BC.
∴ AO是等腰△ABC底边BC上的中线,
∴BO=CO,
∴两十木桩离旃轩底部的距离相等.
八年级下册数学课本北师大版答案(二)
习题1.6
1.证明:
∵D为BC的中点,
∴BD=CD.
在Rt△BDF和Rt△CDE中,
∴Rt△BDF≌Rt△CDE(HL).
∴∠B=∠C(全等三角形的对应边相等),
∴AB=AC(等角对等边),
∴△ABC是等腰三角形.
2.证明:
∵DE⊥AC,BF⊥AC,
∴∠DEC=∠BFA=90°.
在Rt△ABF和Rt△CDE中,
∴Rt△ABF≌Rt△CDE(HL).
∴AF=CE,∠A=∠C(全等三角形的对应边相等、对应角相等).
∴AB//CD,AF-EF=CE-RF,
∴AE=CF.
3.证明:
∵MP⊥OA,NP⊥OB,
∴∠PMO=∠PNO=90°.
又∵OM=ON,OP=OP,
∴Rt△POM≌Rt△PON(HL).
∴∠AOP=∠BOP,即OP平分∠AOP.
4.解:(1)假命题.当一个直角三角形雹高没的两边直角与另一个直角三角形源纳的一条直角边和斜边分别相等时,两个直角三角形不全等.
(2)假命题.当一个直角三角形的锐角和一条直角边与另一个直角三角形的一个锐角和一条斜边分别相等时,两个直角三角形不全等.
5.(1)解:边:DB=DA,BE=AE;角:∠B=∠BAD=30°,∠ADE=∠BDE=60°,∠BED=∠AED=90°.
(2)证明:
∵∠C=90°,∠B=30°,
∴∠BAC=60°.
∵∠BAD=∠B=30°.
∴∠CAD=∠EAD=30°.
又∵∠AED=∠C=90°,且AD=AD,
∴△ACD≌△AED(AAS).
(本题证法不唯一)
(3)不能.
八年级下册数学课本北师大版答案(三)
第23页
证明:
∵AB是线段CD的角平分线,
∴ED=EC,FC=FD(线段垂直平分线的性质定理).
∴∠ECD=∠EDC(等边对等角),∠FCD=∠FDC(等边对等角).
【答案】: 1.(1)是不可能事件;(2)是必然事件;(3)(4)(5)(6)(7)(8)是随机事件.
2.解:(1)随机事件,因为第①只袋子中有3个白球,1个红球,所以任意摸出1个球时,可能是白球,也可能是红球.
(2)不可能事件,因为第②只袋子中没有红球,所以任意摸出1个球,不可能是红球.
(3)随机事件,因为第③只袋子中有1个白球,2个红球,1个黑球,任意摸出1个球时,可能是白球,可能是红球,也可能是黑球.
(4)必然事件,因为第④只袋子哪卜中没有黑球,任意摸出一个球,该球一定不是黑球.
(5)随机事件,因为4只袋子中都有白球,所以摸出的4个球可能都是白球李段穗,不一燃宏定是2个红球、1个白球、1个黑球,所以这是随机事件.
小编推荐:
八年级下册数学课本答案北师大版(一)
第12页练习
八年级下册数学课本答案北师中辩大版(二)
习题1.4
1.证明:
∵DE∥BC,
∴卖橘缺∠ADE=∠B,∠AED=∠C.
∵△ABC为等边三角形,
∴∠A=∠B=∠C=60°.
∴∠A=∠ADE=∠AED=60°.
∴△ADE是等边三角形.
2. 解:∵BC⊥AC.
∴∠ACB=90°.
在Rt△ACB中,∠A=30°,
∴BC=1/2AB=1/2×7.4=3. 7(m).
∵D为AB的中点,
∴AD=1/2 AB=1/2×7.4=3. 7(m).
∵DE⊥AC,
∴∠AED=90°.
在Rt△AED中,
∵∠A=30°,
∴DE=1/2AD=1/2×3.7=1.85(m).
∴BC的长为3.7m,DE的长为1.85m.
3.解:(1)①△DEF是等边三角形.
证明:
∵△ABC是等边三角形,
∴∠ABC=60°,
∵BC∥EF,
∴∠EAB=∠ABC=60°.
又∵AB∥DF,
∴∠EAB=∠F=60°.
同理可证∠E=∠D=60°.
∴△DEF是等边三角形.
②△ABE,△ACF,△BCD也都是等边三角形.点A,B,C分别是EF,ED,FD的中点.
证明:
∵EF∥BC.
∴∠EAB=∠ABC,∠FAC=∠ACB.
∵△ABC是等边三角形,
∴∠ABC=∠ACB=60°,
∴∠EAB=∠FAC=60°.
同理可证∠EBA=∠DBC=60°.∠FCA=∠DCB=60°
∴∠E=∠F=∠D=60°.
∴△ABE,△ACF,△BCD都是等边三角形.
又∵AB= BC=AC,∴AE=AF=BE=BD=CF=CD,即点A,B,C分别是EF.ED、FD的中点.
(2)△ABC是等边j角形.
证明:
∵点A,B,C分别是EF,ED,伍困FD的中点,
∴AE=AF=1/2EF,BE=BD= 1/2ED,CF=CD=1/2FD.
又∵△DEF是等边三角形,
∴∠E=∠F=∠D=60°(等边三角形的三个角都相等,并且每个角都等于60°),EF= ED= FD(等边三角形的三条边都相等).
∴AE=AF=BE=BD=CF=CD.
∴△ABE,△BCD,△ACF都是等边三角形(有一个角等于60°的等腰三角形是等边三角形),
∴ AB=AE,BC=BD,AC=AF,
∴AB=BC=AC,
∴△ABC是等边三角形.
4.已知:如图1-1-48所示,
在Rt△ABC-中,
∠BAC=90°,BC=1/2AB.
求证:∠BAC=30°.
证明:延长BC至 点D,使CD=BC,连接AD .
∵∠BCA=90°,
∴∠DCA=90°.
又∵BC=CD,AC=AC,
∴△ABC≌△ADC( SAS),
∴AB=AD,∠BAC=∠DAC(全等三角形的对应边相等、对应角相等).
又∵BC=1/2AB,
∴ BD=AB=AD,
∴△ABD为等边三角形.
∴∠B4D= 60°.
又∵∠BAC=∠DAC,
∴∠BAC=30°.
5.解:∠ADG=15°.
证明:
∵四边形ABCD是正方形,
∴AD∥BC,AB=AD=DC.
又∵E,F分别是AB,DC的中点,
∴EF∥AD,FD=1/2DC=1/2AD=1/2A'D.
而AD⊥CD,
∴EF⊥CD,
∴∠EFD=90°.
在Rt△A'FD中,FD=1/2A'D,利用第4题的结论可得∠DA'F=30°.
由平行线及翻折的性质可知∠DA'F=2∠ADG=30°,所以∠ADG=15°.
八年级下册数学课本答案北师大版(三)
1(1) B(2) C (3)B
2证明:连接A、C,设AC与BD交于点O.
∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,
又∵BE=DF,∴OE=OF.
∴备前并四边形AECF是平行四边形
3解:如图,若∠AOB=50°,
∵四边形ABCD是矩形,菁优网
∴仿迹AO=BO=DO=CO,
∴△AOB为等腰三角形,
∴∠OAB=∠OBA,
∵∠OAB+∠OBA=180°-50°,
∴∠OAB=∠OBA=65°,
∴∠DAC∠ACB=90°-65°=25°
4 用绳子去测量书架的对角线是否相等。如果相等,上下底垂直:如果不相等,上悔宏下底不垂直。
5 证明:∵DE∥OC,CE∥OD,
∴四边形OCED是平行四边形.
∵四边形ABCD是矩形,
∴AO=OC=BO=OD.
∴四边形OCED是菱形;
以上就是数学八年级下册书答案的全部内容,沪科版八年级数学下册课本答案(三) 第39页 1、(1)3;1 (2)2/3;-2/3 (3)9/2;5/2 (4)7/4;1/4 (5)-3/2;0 (6)0;-1/3 2、(1)不是 (2)是 (3)是 (4)不是 (5)是 3、。