当前位置: 首页 > 所有学科 > 数学

八年级下册数学题答案,八年级下册数学选择题及答案

  • 数学
  • 2023-10-10

八年级下册数学题答案?⑶ 点P为x轴上一动点,点Q为平面内一点,以点A、C、P、Q为顶点作菱形,直接写出点Q的坐标。八年级下册数学第18章平行四边形测试题参考答案 1.B 2.C 3.B 4.B 5.B 6.A 7.A 8.C 9.B 10.B 11、那么,八年级下册数学题答案?一起来了解一下吧。

数学八年级下册单元测试卷

八年级下册数学期末试卷及答案

大家的成完成了初一阶段的学习,进入紧张的初二阶段。下面是我整理的八年级下册数学期末试卷及答案,欢迎参考!

【1】八年级下册数学期末试卷及答案

一、选择题(每小题3分,共3’]p-

0分)

1、直线y=kx+b(如图所示),则不等式kx+b≤0的解集是( )

A、x≤2 B、x≤-1 C、x≤0 D、x>-1

2、如图,小亮在操场上玩,一段时间内沿M→A→B→M的路径匀速散步,能近

似刻画小亮到出发点M的距离y与时间x之间关系的函数图像是( )

3、下列各式一定是二次根式的是( )

A、 B、 C、 D、

4、如果一组数据3,7,2,a,4,6的平均数是5,侍行则a的值是( )

A、8 B、5 C、4 D、3

5、某班一次数学测验的成绩如下:95分的键睁有3人,90分的有5人,85分的有6人,75分的有12人,65

分的有16人,55分的有5人,则该班数学测验成绩的众数是( )

A、65分 B、75分 C、16人 D、12人

6、如图,点A是正比例函数y=4x图像上一点,AB⊥y轴于点B,则ΔAOB的面积是( )

A、4 B、3 C、2 D、1

7、下列命题中,错误的是( )

A、有一组邻边相等的平行四边形是菱形

B、四条边都相等的四边形是正方形

C、有一个角是直角的平行四边形是矩形

D、相邻三个内角中,两个角都与中间的角互补的四边形是平行四边形

8、如图,在一个由4 4个小正方形网格中,阴影部分面积与正方形ABCD的面积比是( )

A、3:4 B、5:8 C、9:16 D、1:2

9、如果正比例函数y=(k-5)x的.图像在第二、四象限内,则k的取值范围是( )

A、k<0 B、k>0 C、k>5 D、k<5

10、已知甲、乙两组数据的平均数相等,如果甲组数据的方差为0.055,乙组数据的方差为0.105。

八年级下册数学选择题及答案

以下是为大家整理的关于初二数学下册期末试题及答案的文章,供大家学习参考。皮码

一、选择题

1. 当分式 有意义时,字母 应满足( )

A. B. C. D.

2.若点(-5,y1)、(-3,y2)、(3,y3)都在反比例函数y= -3x 的图像上,则( )

A.y1>y2>y3 B.y2>y1>y3 C.y3>y1>y2 D.y1>y3>y2

3.如图,在直角梯形 中, ,点 是边 的中点,若 ,则梯形 的面积为( )

A. B. C. D.25

4.函数 的图象经过点(1,-2),则k的值为( )

A. B. C. 2 D. -2

5.如果矩形的面积为6cm2,那么它的长 cm与宽 cm之间的函数关系用图象表示大致( )

A B C D

6.顺次连结等腰梯形各边中点所得四边形是( )

A.梯形 B.菱形 C.矩形 D.正方形

7.若分式 的值为0,则x的值为( )

A.3 B.3或-3 C.-3 D.0

8.甲、乙两人分别从两地同时出发,若相向而行,则a小时相遇;若同向而行,则b小时甲追上乙.那么甲的速度是乙的速度的( )

A. 倍 B. 倍 C. 倍 D. 倍、

9.如图,把一张平行四边形纸片ABCD沿BD对折。

八年级下册数学题目大全和答案

这篇关于《八年级数学下册暑假作业附答案》,是 考 网特地为大家整理的,希望对大家有所帮助!

一、选择题

1.-3的相反数是

A. B.- C.-3 D.3

2.在下瞎渗李列运算中,计算正确的是

A. B.

C.D.

3.数据1,2,3,4,5的平均数是

A.1 B.2 C.3 D.4

4.如图,在△ABC中,D、E分别是AB、AC的中点,若DE=5,则BC为

A.2.5 B.10 C.12 D.25

5.用配方法将代数式 变形,结果正确的是变形

A. B. C. D.

6.图1是一个底面为正方形的直棱柱金属块,因设计需要将它切去一角,如图2所示,则切去后金属块的俯视图是

7.如图,在梯形ABCD中,AB∥DC,AD=DC=CB,

若∠ABD=25°,则∠BAD的大小是

A.30° B.50° C.45° D.60°

8.如图,点P是菱形ABCD的对角线AC上的一个动点,过点P垂直于AC的直线交菱形ABCD的边于M、N两点.设AC=2,BD=1,AP=x,△CMN的面积为y,则y关于x的函数图象大致形状是

二、填空题

9.如果分式 的值是零,那么 的取值是 .

10.2012年3月12日,国家财政部公布全国公共财政收入情喊凳况,1-2月累计,全国财政收入20918.28亿元,这个数据用科学记数法表示并保留两个有效数字为

亿元.

11.如图,⊙O的半径为6,点A、B、C在⊙O上,

且∠ACB=45°, 则弦AB的长是 .

12. 已知:如图, 互相全等的平行四边形按一定的规律排列.其中,第①个图形中有1个平行四边形,第②个图形中一共有5个平行四边形,第③个图形中一共有11个平行四边形,第④个图形中一共有 个平行四边形, ……,第n个图形中一共有平行四边形的个数为 个.

三、解答题

13.计算:

14.解分式方程:

15.已知:如图,∠ABC=90°,DC⊥BC,E,F为BC上两点,且 , .

求证: ;

16.先化简,再求值: ,其中 .

17.如图,在平面直角坐标系xOy中,一次函数 的图象

与反比例函数 的图象的一个交点为A(-1,n).

(1)求反比例函数 的解析式;

(2)若P是坐标轴上一点(点P不与点O重合),且PA=OA,试写出点 的坐标.

18.某小型超市购进了两批相同品种的水果,第一批用了200元,第二批用了550元,第二批购进水果的重量是第一批的2.5倍,且进价比第一批每千克多1元.

求第一批购进水果多少千克?

四、解答题

19.甲、乙两人同时从某地A出发,

甲以60米/分钟的速度沿北偏东30°方向行走,乙沿北偏西45°

方向行走,10分钟后甲到达B点,乙正好到达甲的正西方向

的C点,此时甲、乙两人之间的距离是多少米?

20.PMI指数英文全称Purchase Management Index,中文翻译为采购经理指数.PMI是一

套月度发布的、综合性的经济监测指标体系,分为制造业PMI、服务业PMI.PMI是通过对采购经理的月度调查汇总出来的指数,反映了经济的变化趋势.下图来源于2012年3月2日的《都市快报》,反映了2011年2月至2012年2月期间我国制造业PMI指数变化情况,请根据以上信息并结合制造业PMI图,解答下列问题:

(1)在以上各月PMI指数,中位数是 ;

(2)观察制造业PMI指数图,下列说法正确的有 (请填写序号):

①我国制造业PMI指数从2011年11月至2012年2月连续三个月回升,并创下四个月新高;

②自2011年2月至2012年2月我国制造业每月PMI指数较前一月下降的次数是10次.

21.如图,以△ABC的边AB为直径的⊙O与边BC交于点D,过点D作DE⊥AC,垂足为E,延长AB、ED交于点F,AD平分∠BAC.

(1)求证:EF是⊙O的切线;

(2)若⊙O的半径 为2,AE=3,求BF的长.

22.阅读材料1:

把一个或几个图形分割后,不重叠、无缝磨迟隙的重新拼成另一个图形的过程叫做“分割——重拼”.如图1,一个梯形可以分割——重拼为一个三角形;如图2,任意两个正方形可以分割——重拼为一个正方形.

(1)请你在图3中画一条直线将三角形分割成两部分,将这两部分重新拼成两个不同的四边形,并将这两个四边形分别画在图4,图5中;

阅读材料2:

如何把一个矩形ABCD(如图6)分割——重拼为一个正方形呢?操作如下:

①画辅助图:作射线OX,在射线OX上截取OM=AB,MN=BC.以ON为直径作半圆,过点M作MI⊥OX,与半圆交于点I;

②如图6,在CD上取点F,使AF=MI ,作BE⊥AF,垂足为E.把△ADF沿射线DC平移到△BCH的位置,把△AEB沿射线AF平移到△FGH的位置,得四边形EBHG.

(2)请依据上述操作过程证明得到的四边形EBHG是正方形.

五、解答题

23.在△ABC中,AB=AC,点P为△ABC所在平面内一点,过点P分别作PE∥AC交AB于点E,PF∥AB交BC于点D,交AC于点F.

(1)如图1,若点P在BC边上,此时PD=0,易证PD,PE,PF与AB满足的数量关系是PD+PE+PF=AB;当点P在△ABC内时,先在图2中作出相应的图形,并写出PD,PE,PF与AB满足的数量关系,然后证明你的结论;

(2)如图3,当点P在△ABC外时,先在图3中作出相应的图形,然后写出PD,PE,PF与AB满足的数量关系.(不用说明理由)

六、解答题

24.已知二次函数y=ax2+bx+2,它的图像经过点(1,2).

(1)如果用含a的代数式表示b,那么b= ;

(2)如图所示,如果该图像与x轴的一个交点为(-1,0).

①求二次函数的解析式;

②在平面直角坐标系中,如果点P到x轴的距离与点P到y轴的距离相等,则称点P为等距点.求出这个二次函数图像上所有等距点的坐标.

(3)当a取a1,a2时,二次函数图像与x轴正半轴分别交于点M(m,0),点N(n,0).如果点N在点M的右边,且点M和点N都在点(1,0)的右边.试比较a1和a2的大小,并说明理由.

七、解答题

25.已知抛物线y = x2 + bx ,且在x轴的正半轴上截得的线段长为4,对称轴为直线x = c.过点A的直线绕点A (c ,0 ) 旋转,交抛物线于点B ( x ,y ),交y轴负半轴于点C,过点C且平行于x轴的直线与直线x = c交于点D,设△AOB的面积为S1,△ABD的面积为S2.

(1) 求这条抛物线的顶点的坐标;

(2) 判断S1与S2的大小关系,并说明理由.

参考答案:

第Ⅰ卷 (机读卷 共32分)

一、选择题(共8道小题,每小题4分,共32分)

题号 1 2 3 4 5 6 7 8

答案 D C C B C A B A

第Ⅱ卷 (非机读卷 共88分)

二、填空题(共4道小题,每小题4分,共16分)

题号 9 10 11 12

答案 x=-1 2.1×104 6 19,n2+n-1

三、解答题(本题共30分,每小题5分)

13.解:原式= ……………………………………………………4分

= …………………………………………………………………………5分

14.解:方程的两边同乘 ,得

………………………………………………………………………………2分

解得: ………………………………………………………3分

检验:把 代入 ………………………………4分

∴原方程的解为: . …………………………………………5分

15.证明:(1) ,

∴ ,

.…………………………………………………………………………………1分

∠ABC=90°,DC⊥BC

∴∠ABC=∠DCE=90°………………………………………………………………………3分

在 和 中,

.…………………………………………………………………………5分

16.解:原式= ………………………………………………2分

= ………………………………………………3分

= .…………………………………………………………………………4分

当 时,

原式= .…………………………………………………………5分

17.解:(1)∵ 点A 在一次函数 的图象上,

∴ .

∴ 点A的坐标为 .…………………………………………………………………1分

∵ 点A在反比例函数 的图象上,

∴ .

∴反比例函数的解析式为 . ……………………………………………………3分

(2)点 的坐标为 .………………………………………………………5分

18.解:设第一批购进水果 千克,则第二批购进水果2.5 千克,…………………………1分

依据题意得:

………………………………………………………………………………3分

解得x=20,

经检验x=20是原方程的解,且符合题意……………………………………………………4分

答:第一批购进水果20千克;………………………………………………………………5分

四、解答题(本题共20分,每小题5分)

19.解:过 作 交 于 ,则 ,

∴ …………………………………………………………………5分

答:甲乙两人之间的距离是 米

20.解:(1)50.9;…………………………….…………………………………………….2分

(2)①……………………………………………………………………………….5分

21. 解:(1)连接OD.

∵OA=OD

∴∠OAD=∠ODA.

∵AD平分∠BAC

∴∠OAD=∠CAD,

∴∠ODA=∠CAD.

∴OD∥AC.………………………………………………1分

∵DE⊥AC,

∴∠DEA=∠FDO=90°

∴EF⊥OD.

∴EF是⊙O的切线. ……………………………………2分

(2)设BF为x.

∵OD∥AE,

∴△ODF∽△AEF. ……………………………………3分

∴ ,即 .

解得 x=2

∴BF的长为2. ……………………………………5分

22.(1)

分割正确,且画出的相应图形正确……………………………………………………2分

(2)证明:在辅助图中,连接OI、NI.

∵ON是所作半圆的直径,

∴∠OIN=90°.

∵MI⊥ON,

∴∠OMI=∠IMN=90°且∠OIM=∠INM.

∴△OIM∽△INM.

∴OMIM=IMNM .即IM 2=OM•NM.…………………………………………………3分

∵OM=AB,MN=BC

∴IM 2 = AB•BC

∵AF=IM

∴AF 2=AB•BC=AB•AD.

∵四边形ABCD是矩形,BE⊥AF,

∴DC∥AB,∠ADF=∠BEA=90°.

∴∠DFA=∠EAB.

∴△DFA∽△EAB.

∴ADBE=AFAB .即AF•BE=AB•AD=AF 2.

∴AF=BE.………………………………………………………………………4分

∵AF=BH

∴BH=BE.

由操作方法知BE∥GH,BE=GH.

∴四边形EBHG是平行四边形.

∵∠GEB=90°,

∴四边形EBHG是正方形.……………………………………………………5分

五、解答题(本题满分7分)

23.解:(1)结论: ……………………2分

证明:过点P作MN BC

四边形 是平行四边形

……………………………………………3分

四边形 是平行四边形

……………………………………………4分

又 ,MN BC

…………………………………………5分

(2)结论: ……………………………7分

六、解答题(本题满分7分)

24.解:(1) ……………………………………………1分

(2)①∵二次函数 经过点(1,2)和(-1,0)

解,得

即 …………………………………………………………………………2分

② 该函数图像上等距点的坐标即为此函数与函数 和函数 的交点坐标 ,

解得P1( ) P2( )

P3( ) P4( )……………………………………………………4分

(3) ∵二次函数与x轴正半轴交于点M(m,0)且

当a= 时

∴ 即

同理

∵ 故

∴ ………………………………………………………………………………………7分

七、解答题(本题满分8分)

25.解:(1)∵ 抛物线y=x2+bx,在x轴的正半轴上截得的线段的长为4,

∴ A(2,0),图象与x轴的另一个交点E的坐标为 (4,0),对称轴为直线x=2.

∴ 抛物线为 y = x2 +b x经过点E (4,0) .

∴ b= -4,

∴ y = x2 -4x .

∴ 顶点坐标为(2,-4). ………… 2分

(2) S1与S2的大小关系是:S1 = S2 ………… 3分

理由如下:

设经过点A(2,0)的直线为y=kx+b (k≠0).

∴ 0 =2k+b.

∴ k = b.

∴ y= .

∴ 点B 的坐标为(x1 , ),

点B 的坐标为(x2 , ).

当交点为B1时,

.

.……………………………………… 5分

当交点为B2时,

= .

∴ S1 = S2.

综上所述,S1 = S2. …………………………………………………………… 8分

八年级下册数学基础题带答案

每念并道错的 八年级 数学课本习题做三遍。第一遍:讲评时;第二遍:一周后;第三遍:考试前。以下是我为大家整理的北师大版八年级下册数学课本的答案,希望你们喜欢。

八年级下册数学课本北师大版答案(一)

第20页练习

1.解:(1)假命题.如图1-2-34所示,

在Rt△ABC与Rt△A'B'C′中,∠A=∠A'=90°,

∠B=∠C=45°=∠B′=∠C′,AB= AC≠A'B′=A'C′,则Rt△ABC与Rt△A'B'C′不全等,

(2)真命题,

已知:如图1-2-35所示,∠C=∠C′=90°,∠A=∠ A′,且AB=A'B'.

求证:Rt△A BC≌Rt△A'B'C’.

证明:

∵∠C=∠C′= 90°,∠A=∠A′,且AB=A'B',

∴ Rt△ABC≌Rt△A'B'C’(AAS).

(3)真命题,

已知:如图1-2-35所示,∠C=∠C′=90°,AC=A'C',BC=B'C'.

求证:Rt△ABC≌Rt△A'B'C′.

证明:

∵AC=A'C′,∠C=∠C′=90°,BC=B′C′,

∴Rt△ABC≌Rt△A′B'C′(SAS).

(4)真命题

已知:如图1-2-36所示,∠C=∠C′=90°,

AC=A′C′,中线AD=A'D'.

求证:Rt△ABC≌RtAA'B'C′.

证明:

∵∠C=∠C′=90°,AD=AD ′,AC=A'C′,

∴Rt△ACD≌Rt△A'C'D'(HL).

∴DC=D'C’.

∵BC=2D,B'C'=2D'C',

∴BC=B'C′

∴Rt△ABC≌Rt△A'B'C(SAS).

2.解:相等理由:

∵AB=AC=12m.

∴由三点A,B,C 构成的三角形是等腰三角形.

又∵AO⊥BC.

∴ AO是等腰△ABC底边BC上的中线,

∴BO=CO,

∴两十木桩离旃轩底部的距离相等.

八年级下册数学课本北师大版答案(二)

习题1.6

1.证明:

∵D为BC的中点,

∴BD=CD.

在Rt△BDF和Rt△CDE中,

∴Rt△BDF≌Rt△CDE(HL).

∴∠B=∠C(全等三角形的对应边相等),

∴AB=AC(等角对等边),

∴△ABC是等腰三角形.

2.证明:

∵DE⊥AC,BF⊥AC,

∴∠DEC=∠BFA=90°.

在Rt△ABF和Rt△CDE中,

∴Rt△ABF≌Rt△CDE(HL).

∴AF=CE,∠A=∠C(全等三角形的对应边相等、对应角相等).

∴AB//CD,AF-EF=CE-RF,

∴AE=CF.

3.证明:

∵MP⊥OA,NP⊥OB,

∴∠PMO=∠PNO=90°.

又∵OM=ON,OP=OP,

∴Rt△POM≌Rt△PON(HL).

∴∠AOP=∠BOP,即OP平分∠AOP.

4.解:(1)假命题.当一个直角三角形雹高没的两边直角与另一个直角三角形源纳的一条直角边和斜边分别相等时,两个直角三角形不全等.

(2)假命题.当一个直角三角形的锐角和一条直角边与另一个直角三角形的一个锐角和一条斜边分别相等时,两个直角三角形不全等.

5.(1)解:边:DB=DA,BE=AE;角:∠B=∠BAD=30°,∠ADE=∠BDE=60°,∠BED=∠AED=90°.

(2)证明:

∵∠C=90°,∠B=30°,

∴∠BAC=60°.

∵∠BAD=∠B=30°.

∴∠CAD=∠EAD=30°.

又∵∠AED=∠C=90°,且AD=AD,

∴△ACD≌△AED(AAS).

(本题证法不唯一)

(3)不能.

八年级下册数学课本北师大版答案(三)

第23页

证明:

∵AB是线段CD的角平分线,

∴ED=EC,FC=FD(线段垂直平分线的性质定理).

∴∠ECD=∠EDC(等边对等角),∠FCD=∠FDC(等边对等角).

数学八年级下册选择题

做测试题是学习八年级下册数学第18章平行四边形的重要过程,更能感受数学的奥妙。下面我给大家分享一些八年级下册数学第18章平行四边形的测试题及答案,大家快来跟我一起看看吧。

八年级下册数学第18章平行四边形测试题

一、选择题(每小题4分,共40分)

1.已知一个平行四边形两邻边的长分别为10和6,那么它的周长为( c ).

A. 16 B. 60 C.32 D. 30

2. 菱形的两条对角线长分别为6㎝和8㎝,则这个菱形的面积为( b )

A .48 B. C. D.18

3.矩形、菱形、正方形都具有的性质是(c)

A.每一条对角线平分一组对角 B.对角线相等

C.对角线互相平分 D.对角线互相垂直

4.有下列四个命题,其中正确的个数为( c )

①两条对角线互相平分的四边形是平行四边形②两条对角线相等的四边形是菱形③两条对角线互相垂直的四边形是正方形④两条对角线相等且互旁乱相垂直的四边形是正方形

A.4 B.3 C.2 D.1

5.顺次连接矩形四边中点得到的四边形一定是(c)

A.正方形 B.矩形 C.菱形 D.平行四边形

6.若四边形的两条对角线相等,则顺次连接该四边形各边中点所得的四边形是( c )

A.梯形 B.矩形 C.菱形 D.正方形

7.下列说法正确的是( a )

A.一组对边平行且相等的四边形是平行四边形 B.对角线相等的四边形是矩形

C.对角线相等的平行四边形是正方形 D.对角线互相垂直的四边形是菱形

8.如图,在 ABCD中,对角线AC,BD相交于点O,AC=10,BD=6,AD=4,则 ABCD的面积是( c )

A.12 B. C.24 D.30

9.如图,在Rt△ABC中,∠ABC=90°,AB=BC=2,点D在BC上,以AC为对角线的所有

ADCE中DE的最小值是( b )

A. 1 B. 2 C. D.

10.如图,正方形ABCD的边长为2,点E、F分别为边AD、BC上的点,且EF= ,点G、H分别边AB、CD上的点,连接GH交EF于点P。

以上就是八年级下册数学题答案的全部内容,【点评】此题主要考查了四边形综合题,关键是正确画出图形,证明∠BAD=2∠EAF.此题是一道综合题,难度较大,题目所给例题的思路,为解决此题做了较好的铺垫. 八年级数学怎么快速提高 一、。

猜你喜欢