当前位置: 首页 > 所有学科 > 数学

九年级数学二次函数,初三二次函数经典大题

  • 数学
  • 2024-01-01

九年级数学二次函数?二次函数的基本表示形式为y=ax²+bx+c(a≠0)二次函数最高次必须为二次,二次函数的图像是一条对称轴与y轴平行或重合于y轴的抛物线。它的定义是一个二次多项式(或单项式)。 如果令y值等于零,则可得一个二次方程。那么,九年级数学二次函数?一起来了解一下吧。

二次函数的典型例题

解:

设函数解析式为y=a(x-3)²+2

点(-1,0)代入得

0=16a+2

解得a=-1/8

所以函数解析式为y=(-1/8)(x-3)²+2

即y=(-1/8)x²+(3/4)x+7/8

如还不明白,请继续追问。

如果你认可我的回答,请及时点击【采纳为满意回答】按钮

手机提问的朋友在客户端右上角评价点【满意】即可。

初三学二次函数的窍门

作为九年级数学重难考点之一,二次函数一直被很多同学头疼。下面我整理了初中二次函数知识点总结,希望能帮到你!

一、定义与定义表达式

一般地,自变量x和因变量y之间存在如下关系:

y=ax^2+bx+c(a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下,IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大.)

则称y为x的二次函数。

二次函数表达式的右边通常为二次三项式。

二、二次函数的三种表达式

一般式:y=ax^2;+bx+c(a,b,c为常数,a≠0)。

顶点式:y=a(x-h)^2;+k[抛物线的顶点P(h,k)]。

交点式:y=a(x-x1)(x-x2)[仅限于与x轴有交点A(x1,0)和B(x2,0)的抛物线]。

注:在3种形式的互相转化中,有如下关系:h=-b/2ak=(4ac-b^2;)/4ax1,x2=(-b±√b^2;-4ac)/2a。

三、二次函数与一元二次方程

特别地,二次函数(以下称函数)y=ax²+bx+c。

二次函数必考题型

初三数学二级函数有哪些知识点呢?想要了解的小伙伴,赶紧来瞧瞧吧!下面由我为你精心准备了“初三数学二次函数知识点有哪些”,本文仅供参考,持续关注本站将可以持续获取更多的资讯!

初三数学二次函数知识点有哪些

二次函数介绍

二次函数的基本表示形式为y=ax²+bx+c(a≠0)二次函数最高次必须为二次,二次函数的图像是一条对称轴与y轴平行或重合于y轴的抛物线。它的定义是一个二次多项式(或单项式)。

如果令y值等于零,则可得一个二次方程。该方程的解称为方程的根或函数的零点。

二次函数表达式是什么

(一)顶点式

y=a(x-h)²+k(a≠0,a、h、k为常数),顶点坐标为(h,k),对称轴为直线x=h,顶点的位置特征和图像的开口方向与函数y=ax²的图像相同,当x=h时,y最大(小)值=k。

(二)交点式

y=a(x-x₁)(x-x₂)[仅限于与x轴即y=0有交点时的抛物线,即b²-4ac>0]

函数与图像交于(x₁,0)和(x₂,0)

(三)一般式

y=aX²+bX+c=0(a≠0)(a、b、c是常数)

二次函数图像的对称关系

(一)对于一般式:

①y=ax2+bx+c与y=ax2-bx+c两图像关于y轴对称。

九年级二次函数知识点总结图

二次函数的定义

一般地,形如y=ax2+bx+c(a,b,c为常数,a≠0)的函数叫做x的二次函数.如y=3x2,y=3x2-2,y=2x2+x-1等都是二次函数.

注意:(1)二次函数是关于自变量的二次式,二次项系数a必须是非零实数,即a≠0,而b,c是任意实数,二次函数的表达式是一个整式;

(2)二次函数y=ax2+bx+c(a,b,c是常数,a≠0),自变量x的取值范围是全体实数;

(3)当b=c=0时,二次函数y=ax2是最简单的二次函数;

(4)一个函数是否是二次函数,要化简整理后,对照定义才能下结论,例如y=x2-x(x-1)化简后变为y=x,故它不是二次函数.

二次函数y=ax2的图象和性质

(1)函数y=ax2的图象是一条关于y轴对称的曲线,这条曲线叫抛物线.实际上所有二次函数的图象都是抛物线.

二次函数y=ax2的图象是一条抛物线,它关于y轴对称,它的顶点坐标是(0,0).

①当a>0时,抛物线y=ax2的开口向上,在对称轴的左边,曲线自左向右下降;在对称轴的右边,曲线自左向右上升,顶点是抛物线上位置最低的点,也就是说,当a>0时,函数y=ax2具有这样的性质:当x0时,函数y随x的增大而增大;当x=0时,函数y=ax2取最小值,最小值y=0;

②当a<0时,抛物线y=ax2的开口向下,在对称轴的左边,曲线自左向右上升;在对称轴的右边,曲线自左向右下降,顶点是抛物线上位置最高的点.也就是说,当a<0时,函数y=ax2具有这样的性质:当x0时,函数y随x的增大而减小;当x=0时,函数y=ax2取最大值,最大值y=0;

③当|a|越大时,抛物线的开口越小,当|a|越小时,抛物线的开口越大.

(2)二次函数y=ax2的表达式的确定

因为二次函数y=ax2中只含有一个需待定的系数a,所以只需给出x与y的一对对应值即可求出a的值.

抛物线与x轴交点个数

Δ= b^2-4ac>0时,抛物线与x轴有2个交点。

初三数学二次函数

由题意得:y=a(x+3)²+2

又因为过点(-1,0),

则有0=a(-1+3)²+2,a=负二分之一,

y=-1/2(x+3)²+2

确认后请及时采纳。

以上就是九年级数学二次函数的全部内容,2.设顶点式:y=a(x-h)2+k若已知二次函数图象的顶点坐标或对称轴方程与最大值或最小值,将已知一个点坐标的条件代入所设顶点式,求出待定系数,最后将解析式化为一般式。

猜你喜欢