数学分析法格式?分析法的思维特点是:执果索因;分析法的书写格式:要证明命题B为真,只需要证明命题为真,从而有……,这只需要证明命题为真,从而又有…… 这只需要证明命题A为真,而已知A为真,故命题B必为真。那么,数学分析法格式?一起来了解一下吧。
解析式的意思如下:
广义:用表示运算类型和运算次序的符号把数和字母连结而成的表达形式。单独的一个数或字母也叫解析式。
狭义:仅仅指的是初等数学中的函数表示方法,通过不同的运算法则,建立自变量与函数值之间的非空数集的对应。
整体看,体现了计算方法对定义域中全体自变量的解析。比如;y=2x+1,就是通过乘以2加1,这个具体的计算对全体实数内的x进行解析,得到一群实数,就是值域。
解析法(analytic method)又称为分析法,它是应用解析式去求解数学模型的方法。数学中用解析式表示函数或任意数学对象的方法叫解析法。
解析函数,区域上处处可微分的复函数。18世纪,欧拉和达朗贝尔在研究水力学时已发现平面不可压缩流体的无旋场的势函数Φ(x,y)与流函数Ψ(x,y)有连续的偏导数,且满足微分方程组,并指出f(z)=Φ(x,y)+iΨ(x,y)是可微函数。
这一命题的逆命题也成立。柯西把区域上处处可微的复函数称为单演函数,后人又把它们称为全纯函数、解析函数。黎曼从这一定义出发对复函数的微分作了深入的研究,后来,就把上述的偏微分方程组称为柯西-黎曼方程,或柯西-黎曼条件。
解析集(analytic sets)简称A集,是波莱尔集合的一种扩张。
a²+b²+3-[ab+√3﹙a+b﹚]
=(a+b)^2+3-3ab-√3(a+b)
(a+b)^2+3>=2√3(a+b),[(a+b)^2+3]/2>=√3(a+b)
(a-√3)^2+(b-√3)^2+2ab-3>=0,(a-√3)^2+(b-√3)^2>=3-2ab,所以3-2ab>=0,ab<=3/2
[(a+b)^2+3]/2-3ab=a^2/2+b^2/2-2ab+3/2>=3/2-ab>=0
所以[(a+b)^2+3]/2>=3ab
[(a+b)^2+3]/2+[(a+b)^2+3]/2>=3ab+√3(a+b)
所以a²+b²+3≥ab+√3﹙a+b﹚
数学错题分析写法如下。
在此次练习之后,我深刻的感受到了我的不足之处。第一没有认真的审题 第二没有认真的做题 第三没有及时的复习这些错误都是可以避免的。
可我却没有做到,辜负了老师的期望,辜负了父母的期望,我理应深刻的反思,认识自己的不足,并弥补自己的不足。 在这,我保证我会在心中刻下这次的错误,并以十分的热忱改善。望相信。
数学分析
数学错题分析内容包括以下三个核心部分。典型错题:错因分析:纠错措施:除了以上部分,还可以将类似的错误题型一并罗列出来。或者拣关键字,再次复习时直接翻看错题本,复习速度是很快很有效的。
在微分几何中有着纤维丛及流形上的计算等概念.在代数几何中有着如多项式方程的解集等几何对象的描述,结合了数和空间的概念;亦有着拓扑群的研究,结合了结构与空间.李群被用来研究空间、结构及变化。
1.避免“一步到位”
是指解题过程中,省略关键步骤,而直接得到答案,这样扣分是严重的.由于解答题是严格按照步骤给分的,如果解题过程中失去关键步骤,跳过拟考查的知识点、能力点,就意味着失去得分点,自然被扣分.
例1(2000年全国高考题) 已知函数y= cos2x+ sinxcosx+1,x∈R.
(I) 当函数y取得最大值时,求自变量x的集合;
(II) 该函数的图像可由y=sinx(x∈R)的图像经过怎样的平移和伸缩变换得到?
解:(I)由题设可得,y= sin(2x+ )+ ,故有
当 x= +k ,k∈Z,函数y取得最大值.
(II) 略.
评注:在(Ⅰ)的解答中犯了“大题小作”中的“一步到位”错误,缺少了化简过程的3个要点与何时取到最大值的1个要点,因而被扣分.
2. 避免“使用升华结论”
在解选择和填空题中,使用升华结论(教材中未给出的正确结论)是允许的,而且还是一种简捷快速的答题技巧.而直接运用(不加说明或证明)在解答题中是不合适的,且是“大题小作”,要适当扣分的.
解答高考解答题的理论根据应该是教材中的定义、定理、公理和公式,而学生使用“升华结论”则达不到考查能力、考查过程的目的,因此不能以题解题,不能直接运用教材以外别的东西,以免被扣分.
例2⑴(1991年全国高考题) 根据函数单调性的定义,证明函数f (x)=-x3+1在(-∞,+∞)上是减函数.
⑵(2001年全国高考题) 设抛物线y2 =2px (p>0)的焦点为F,经过点F的直线交抛物线于A、B两点,点C在抛物线的准线上,且BC∥x轴.证明直线AC经过原点O.
评分标准中指出:
对于⑴:“利用y=x3在[0,+∞)上是增函数的性质,未证明y=x3在(-∞,+∞)上也是增函数而直接写出f(x1)-f(x2)= - <0,未能证明为什么 - <0过程,由评分标准知最多得3分.
对于⑵:有些考生证明时,直接运用课本中的引申结论“y1 y2=p2”而跳过拟考查的知识点、能力点而被扣2分.
对于课本习题、例题的结论,是要通过证明才能直接使用(黑体字结论例外),否则将被“定性”为解题不完整而被扣分.又如1996年高考理科第22(Ⅱ)及2001年全国高考理科第17(Ⅱ)利用面积射影定理,由于不加证明而直接使用,因而被扣分.
3 避免“答非所问”
是指没有根据题意要求或没有看清题意要求,用其它方法或结论作答,这明显也要被扣分的.
例3(1993年全国高考题)已知数列
Sn为其前n项和.计算得观察上述结果,推测出计算Sn的公式,并用数学归纳法加以证明.
解:依据题意,推测出Sn的公式为:
Sn= .
∵ ak= = - ,
分别取k=1,2,3,…,n,并将n个式子相加得:
Sn=1- = .
评注 以上解法可谓“简单、明了”,但证明时不用数学归纳法,为“答非所问”,不合题意,扣分是必然的.又如1999年高考第22题(应用题),第(Ⅰ)问中求“冷轧机至少需要安装多少对轧辊”,要求是用整数作答,不少考生未能用整数作答,违背题意而被扣分.
(四)了解“评分标准”,把握得分点
掌握解答题的“得分点”就要了解高考的评分标准,解答题评分标准是分步给分,但并非写得越多得分越高,而是踏上得分点就给分,即按所用的数学知识,数学思想方法要点式给分,允许“等价答案”,允许“跳步得分”. 因此解答时,应步骤清,要点明,格式齐. 对于不同题型的给分规律有:
1.立几题得分点
通常分作证,计算两部分给分,各段中间又按要点给分.证明主要写清两点:①空间位置关系的判断推理的依据(课本中的定理、公理);②什么是空间角和距离及理由(紧扣定义). 特别要注意没有写清角、距离要被扣分.计算过程的书写:计算一般是解三角形,要写清三角形的条件及解出的结果. 用等积法解题,要找出等积关系并计算. 都是分段得分的,如1998年23题,1999年22题,都有3个小题,每小题4分,其中作证2分,计算2分.
2.分类讨论题得分点
按所分类分别给分,加上归纳的格式(即写为“综上:当××时,结论是××”)分. 如1996年第20题,按a>1和0<a<1两类分别给5分,归纳给1分.2000年理19(Ⅱ),求 a 的取值范围,使函数在区间[0,+∞)上是单调函数,按a≥1和0<a<1讨论各得2分.
3.应用题得分点
按设列、解答两部分给分.特别要注意不答和答错都要扣1分,应注意设、列、解、答的完整性,争取步骤阶段分.
4.推理证明题得分点
按推理格式,推理变形步骤给分. 对于用定义证明函数的单调性、奇偶性,用数学归纳法证题,都有严格的格式分,应完整,避免失分. 即使推理证明不出,宁可跳步作答,也要套用格式. 从条件、结论两头往中间靠,这样写完格式,这样可以少扣分.
5.综合题得分点
按解答的过程,分步给分,每个步骤又按要点给分. 尽可能把过程分步写出,尽量不跳步,根据题意
列出关系,译出题设中每一个条件,能演算几步算几步,尚未成功不等于失败,特别是那些解题层次分明的题目,那些已经程序化的方法,每进行一步得分点的演算都可以得到这一步的满分,最后结论虽然没有算出来,但分数已过半,所以说,“大题拿小分”也是一个好主意. 因此尽量增加分步得分机会,千万别轻易留空白题.
(五)常用的解答题解题技巧
1.较简单的解答题的求解
对于比较容易解答的解答题(一般是前面3道),宜采用一慢一快的方法,就是审题要慢,解题要快,速战速决,为后面3道解答题留下时间.
找到解题方法后,书写要简明扼要,快速规范,不要拖泥带水,罗唆重复,用阅卷老师的话,就是写出“得分点”,一般来讲,一个原理写一步就可以了。
综合法:一般地,利用已知条件和某些数学定义、公理、定理等,经过一系列的推理论证,最后推导出所要证明的结论成立,这种证明方法叫做综合法。
分析法:一般地,从要证明的结论出发,逐步寻求使它成立的充分条件,直到最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定理、定义、公理等)为止,这种证明方法叫做分析法。
分析法的思维特点是:执果索因;分析法的书写格式:要证明命题B为真,只需要证明命题为真,从而有……,这只需要证明命题为真,从而又有…… 这只需要证明命题A为真,而已知A为真,故命题B必为真。
综合法是“分析法”的对称。把经济现象的各个部分、各个方面和各种因素联系起来,从总体上认识和把握经济现象的方法。其实质在于: 抓住事物在总体上相互联结的矛盾的特殊性,研究这一矛盾如何决定事物的各种属性,如何在事物的运动中表现出整体的特性。
综合法
它能够克服分析法的局限性,能够揭示事物在分割状态下无法显露出来的特性。在认识事物的过程中,综合与分析是辩证统一的。综合必须以分析为基础,分析也要以先前综合的成果为指导,而且在一定条件下,综合与分析可以互相转化。
以上就是数学分析法格式的全部内容,从潜意识的存在到口头表达是一次进步,从口头表达到书面表达又是一次进步。书面表达是考后试卷分析的最高级形式。所以,建议学生在考试后写出书面的试卷分析。这个分析是反观自己的一面镜子,是以后进步的重要阶梯。