当前位置: 首页 > 所有学科 > 数学

初二期末考试试卷数学,八下期末试卷数学

  • 数学
  • 2023-08-25

初二期末考试试卷数学?(3)将直角尺靠紧窗框的一个角(如图③),调整窗框的边框,当直角尺的两条直角边与窗框无缝隙时(如图④),说明窗框合格,这时窗框是 形,根据的数学道理是: 。 五、那么,初二期末考试试卷数学?一起来了解一下吧。

二年级数学知识点总结

这篇关于初二下数学期末试卷含答案(新人教版),是特地为大家整理的,希望对大家有所帮助!

一、选择题(本题有10小题,每小题3分,共30分.)

1.在下列方程中,关于 的分式方程的个数有( )

① ②. ③. ④. ⑤

⑥ .

A.2个 B.3个 C.4个 D.5个

2.已知某直角三角形的斜边长为25,且一条直角边为7,则另一直角边为( )

A.26 B.25 C.24 D.23

3.顺次连结四边形各边中点所得的四边形是( ).

A. 平行四边形 B. 矩形 C. 菱形 D. 以上都不对

4.把分式 中的 、 都扩大3倍,那么分式的值( ).

A. 扩大3倍 B. 缩小3倍 C. 扩大9倍 D. 不变

5.当x>0时,四个函数 y= -x ,y=2x+1, , ,其中y随x的增大而增大的函数有( )

A 1 个 B 2 个 C 3 个 D 4个

6.如果( )2÷( )2=3,那么a8b4等于( )

A.6 B.9 C.12 D.81

7.已知,如图,一轮船以16海里/时的速度从港口A出发向东北方向航行,另一轮船以12海里/时的速度同时从港口A出发向东岩如南方向航行,离开港口2小时后,则两船相距()

A.25海里 B.30海里 C.35海里 D.40海里

8.方程 的根是( )

A. =1 B. =-1 C. = D. =2

9在四边形ABCD中,O是对角线交点,下列条件中,不能判定四边形ABCD是平行四边形的

是( )

A.AD∥BC,AD=BC B.AB=DC,AD=BC

C.AB∥DC,AD=BC D.OA=OC,OD=OB

10.已知等腰梯形的大底等于对角线的长,小底等于高,则该梯形的小底与大底的长度之比是( )

A.3∶4 B. 3∶5 C.2∶3 D.1∶2

二.填空题(本题有6小题,每小题2分,共12分)

11.函数 的自变量 的取值范围是 .

12.若菱形的周长为24 cm,一个内角为60°,则菱形较短的一条对角线为______ cm。

初二期末考试试卷数学人教版

这篇关于初二下数学期末试卷(附答案),是 考 网特地为大家整理的,希望对大家有所帮助!

一、选择题(本大题共8小题,每小题3分,共24分)

每题给出四个答案,其中只有一个符合题目的要求,把选出的答案编号填在下表中.

题号 1 2 3 4 5 6 7 8

答案

1.在式子 , , , , , 中,分式的个数是

A.5 B.4 C.3 D.2

2.反比例函数 的图像经过点 ,则该函数的图像在

A. 第一、三象限 B.第二、四象限 C. 第一、二象限 D. 第三、四象限

3.在下列性质中,平行四边形不一定具有的性质是

A.对边相等 B.对边平行 C. 对角互补 D.内角和为3600

4. 菱形 的两条对角线长分别为 和 ,则它的周长和面积分别为

A. B. C. D.

5.函数 的图像上有两点 , ,若 0﹤ ﹤ ,则

A. ﹤ B. ﹥ C. = D. , 的大小关系不能确定

6.在下列各组数据中,可以构成直角三角形的是

A. 0.2,0.3,0.4 B. , , C. 40,41,90 D. 5,6,7

7.样本数据是3,6,10,4,2,则这个样本的方差是

A.8 B.5 C.3 D.

8. 如图,在梯形ABCD中,∠ABC=90º,AE∥CD交BC于E,O是AC的中点,AB= ,AD=2,BC=3,下列结论:①∠CAE=30º;②AC=2AB;③S△ADC=2S△ABE;

④BO⊥CD,其中正确的是

A. ①②③ B. ②③④ C. ①③④ D. ①②③④

二、填空题:(本大题共8小题,每小题3分,共24分)

9.生物学家发现一种病毒的长度约为0.00000043mm,用科学记数法表示这个数的结果

为 .

10. 若 的值为零, 则 的值是 .

11. 数据1,2,8,5,3,9,5,4,5,4的众数是_________,中位数是__________.

12. 若□ABCD的周长为100cm,两条对角线相交于点O,△AOB的周长比△BOC的周长多10cm,那么AB= cm,BC= cm.

13. 若关于 的分式方程 无解,则常数 的值为 .

14.若函数 是反比例函数,则 的值为________________.

15.已知等腰梯形的一个底角为600,它的两底边分别长10cm、16cm,则等腰梯形的周长是_____________________.

16.如图,将矩形 沿直线 折叠,顶点 恰好落在 边上 点处,已知 , ,则图中阴影部分面积为 __.

三、(本大题共3小题,每小题6分,共18分)

17.先化简 ,再取一个你认为合理的x值,代入求原式的值.

18. 如图,正方形网格中的每个小正方形边长都为1,每个小正方形的顶点叫格点,以格点为顶点分别按下列要求画三角形和平行四边形。

初二下数学试卷含答案

这篇沪教版初二上册数学期末试卷的文章,是特地为大家整理的,希望对大家有所帮助!

一、 选择题(本题共10小题,每小题4分,满分40分)

1、已知a是整数,点A(2a+1,2+a)在第二象限,羡行则a的值是…………………………………()

A.-1 B.0 C.1 D.2

2、如果点A(2m-n,5+m)和点B(2n-1,-m+n)关于y轴对称,则m、n的值为…………()

A.m=-8,n=-5B.m=3,n=-5C.m=-1,n=3D.m=-3,n=1

3、下列函数中,自变量x的取值范围选取错误的是………………………………………………()

A.y=2x2中,x取全体实数B. 中,x取x≠-1的所有实数

C. 中,x取x≥2的所有实数 D. 中,x取x≥-3的所有实数

4、幸福村办工厂,今年前5个月生产某种产品的总量C(件)关于时间t(月)的函数图象如图1所示,则该厂对这种产品来说………………………………………………………………………()

A.1月至3月每月生产总量逐月增加,4、5两月每月生产总量逐月减少

B.1月至3月每月生产总量逐月增加,4,5两月每月生产量与3月持平

C.1月至3月每月生产总量逐月增加,4、5两月停止生产

D.1月至3月每月生产总量不变,4、5两月均停止生产

5、下图中表示一次函数y=ax+b与正比例函数y=abx(a,b是常数,且ab≠0)图象是……()

A. B. C. D.

6、设三角形三边之长分别为3,8,1-2a,则a的取值范围为……………………………………()

A.-6

7、如图7,AD是 的中线,E,F分别是AD和AD延长线上的点,且 ,连结BF,CE。

初二下数学试卷模拟题人教版

初二下学期数学期末考试

(时间:90分钟;满分:120分)

一. 选择题:(3分×6=18分)

1. 如图,天平右盘中的每个砝码的质量都是1g,则物体A的质量m(g)的取值范围,在数轴上可表示为( )

2. 下图是小孔成像原理的示意图,根据图中所标注的尺寸,这支蜡烛在暗盒中所成的像CD的长是( )

A. 1/6cm B. 1/3cm C. 1/2cm D. 1cm

3. 下列命题为真命题的是( )

A. 若x,则-2x+3<-2y+3

B. 两条直线被第三条直线所截,同位角相等

D. 全等图形一定是相似图形,但相似图形不一定是全等图形

5. 下图是初二某班同学的一次体检中每分钟心跳次数的频数分布直方图(次数均为整数)。

已知该班只有五位同学的心跳每分钟75次,请观察下图,指出下列说法中错误的是( )

A. 数据75落在第2小组

B. 第4小组的频率为0.1

D. 数据75一定是中位数

6. 甲、乙两人同时从A地出发,骑自行车到B地,已知AB两地的距离为30公里,甲每小时比乙多走3公里,并且比乙先到40分钟。

设乙每小时走x公里,则可列方程为( )

二. 填空题:(3分×6=18分)

7. 分解因式:x3-16x=_____________。

初二数学下册试卷期末

一、选择题:(每题2分,共12分)

1.在二次根式 、 、 中,最简二次根式的个数()

A. 1个 B. 2个 C. 3个 D. 0个

考点: 最简二次根式.

分析: 判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.

解答: 解: = ,被开方数含能开得尽方的因数,不是最简二次根式;

= 被开方数含分母,不是最简二次根式;

符合最简二次根式的定义,是最简二次根式.

故选:A.

点评: 本题考查最简二次根式的定义.根据最简二次根式的定义,最简二次根式必须满足两个条件:

(1)被开方数不含分母;

(2)被开方数不含能开得尽方的因数或因式.

2.关于x的一元二次方程(m﹣2)x2+3x+m2﹣4=0有一个根是0,则m的值为()

A. m=2 B. m=﹣2 C. m=﹣2或2 D. m≠0

考点: 一元二次方程的解;一元二次方程的定义.

分析: 根据一元二次方程的解的定义、一元二次方程的定义求解,把x=0代入一元二次方程即可得出m的值.

解答: 解:把x=0代入方程(m﹣2)x2+3x+m2﹣4=0,

得m2﹣4=0,

解得:m=±2,

∵m﹣2≠0,

∴m=﹣2,

故选B.

点评: 本题逆用一元二次方程解的定义易得出m的值,但不能忽视一元二次方程成立的条件m﹣2≠0,因此在解题时要重视解题思路的逆向分析.

3.在同一坐标系中,正比例函数y=x与反比例函数 的图象大致是()

A. B. C. D.

考点: 反比例函数的图象;正比例函数的图象.

分析: 根据正比例函数与反比例函数图象的性质解答即可.

解答: 解:∵正比例函数y=x中,k=1>0,

故其图象过一、三象限,

反比例函数y=﹣ 的图象在二、四象限,

选项C符合;

故选C.

点评: 本题主要考查了反比例函数的图象性质和正比例函数的图象性质,关键是由k的取值确定函数所在的象限.

4.已知反比例函数y= (k<0)的图象上有两点A(x1,y1)、B(x2,y2),且x1<x2<0,则y1与y2的大小关系是 ()

A. y1<y2 B. y1>y2 C. y1=y2 D. 不能确定

考点: 反比例函数图象上点的坐标特征.

分析: 由于反比例函数y= (k<0)的k<0,可见函数位于二、四象限,由于x1<x2<0,可见A(x1,y1)、B(x2,y2)位于第二象限,于是根据二次函数的增减性判断出y1与y2的大小.

解答: 解:∵反比例函数y= (k<0)的k<0,可见函数位键盯于二、四象限,

∵x1<x2<0,可见A(x1,y1)、B(x2,y2)位于第二象限,

由于在二四象限内,y随x的增大而增大,

∴y1<y2.

故选A.

点评: 本题考查了反比例函数图象上的点的坐标特征,函数图象上的点的坐标符合函数解析式.同时要熟悉反比例函数的增减性.

5.下列定理中,有逆定理存在的是()

A. 对顶角相等

B. 垂直平分线上的点到线段两端点的距离相等

C. 全等三角形的面积相等

D. 凡直角都相等

考点: 命题与定理.

分析: 先写出四个命题的逆命题,然后分别根据对顶角的定义、线段垂直平分线的逆定理、全等三角形的判定和直角的定义进行判断.

解答: 解:A、“对顶角相等”的逆命题为“相等的角为对顶角”,此逆命题为含伏假命题,所以A选项错误;

B、“垂直平分线上的点到线段两端点的距离相等”的逆命题为“到线段两端点的距离相等的点在线段的垂直平分线上”,此逆命题为真命题,所以B选项正确;

C、“全等三角形面积相等”的逆命题为“面积相等的三角形全等”,此逆命题为假命题,所以C选项错误;

D、“谈亮携凡直角都相等”的逆命题为“相等的角都是直角”,此逆命题为假命题,所以D选项错误.

故选B.

点评: 本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式. 2、有些命题的正确性是用推理证实的,这样的真命题叫做定理.也考查了定理.

6.如图,在等腰Rt△ABC中,∠A=90°,AB=AC,BD平分∠ABC,交AC于点D,DE⊥BC,若BC=10cm,则△DEC的周长为()

A. 8cm B. 10cm C. 12cm D. 14cm

考点: 角平分线的性质;等腰直角三角形.

分析: 根据角平分线上的点到角的两边距离相等可得DE=AD,利用“HL”证明Rt△ABD和Rt△EBD全等,根据全等三角形对应边相等可得AB=AE,然后求出△DEC的周长=BC,再根据BC=10cm,即可得出答案.

解答: 解:∵BD是∠ABC的平分线,DE⊥BC,∠A=90°,

∴DE=AD,

在Rt△ABD和Rt△EBD中,

∵ ,

∴Rt△ABD≌Rt△EBD(HL),

∴AB=AE,

∴△DEC的周长=DE+CD+CE

=AD+CD+CE,

=AC+CE,

=AB+CE,

=BE+CE,

=BC,

∵BC=10cm,

∴△DEC的周长是10cm.

故选B.

点评: 本题考查的是角平分线的性质,涉及到等腰直角三角形的性质,全等三角形的判定与性质,熟记各性质并求出△DEC的周长=BC是解题的关键.

二、填空题:(每题3分,共36分)

7.化简: =3 .

考点: 二次根式的性质与化简.

分析: 把被开方数化为两数积的形式,再进行化简即可.

解答: 解:原式=

=3 .

故答案为:3 .

点评: 本题考查的是二次根式的性质与化简,熟知二次根式具有非负性是解答此题的关键.

8.分母有理化 =﹣ ﹣1.

考点: 分母有理化.

分析: 先找出分母的有理化因式,再把分子与分母同时乘以有理化因式,即可得出答案.

解答: 解: =﹣ ﹣1;

故答案为:﹣ ﹣1.

点评: 此题考查了分母有理化,找出分母的有理化因式是本题的关键,注意结果的符号.

9.方程x(x﹣5)=6的根是x1=﹣1,x2=6.

考点: 解一元二次方程-因式分解法.

专题: 计算题.

分析: 先把方程化为一般式,然后利用因式分解法解方程.

解答: 解:x2﹣5x﹣6=0,

(x+1)(x﹣6)=0,

x+1=0或x﹣6=0,

所以x1=﹣1,x2=6.

故答案为x1=﹣1,x2=6.

点评: 本题考查了解一元二次方程﹣因式分解法:先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).

10.某种品牌的笔记本电脑原价为5000元,如果连续两次降价的百分率都为10%,那么两次降价后的价格为405O元.

考点: 一元二次方程的应用.

分析: 先求出第一次降价以后的价格为:原价×(1﹣降价的百分率),再根据现在的价格=第一次降价后的价格×(1﹣降价的百分率)即可得出结果.

解答: 解:第一次降价后价格为5000×(1﹣10%)=4500元,

第二次降价是在第一次降价后完成的,所以应为4500×(1﹣10%)=4050元.

答:两次降价后的价格为405O元.

故答案为:405O.

点评: 本题考查一元二次方程的应用,根据实际问题情景列代数式,难度中等.若设变化前的量为a,平均变化率为x,则经过两次变化后的量为a(1±x)2.

11.函数 的自变量的取值范围是x≥1且x≠2.

考点: 函数自变量的取值范围;分式有意义的条件;二次根式有意义的条件.

专题: 计算题;压轴题.

分析: 根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.

解答: 解:根据题意得:x﹣1≥0且x﹣2≠0,

解得:x≥1且x≠2.

故答案为x≥1且x≠2.

点评: 本题考查了函数自变量的取值范围问题,函数自变量的范围一般从三个方面考虑:

(1)当函数表达式是整式时,自变量可取全体实数;

(2)当函数表达式是分式时,考虑分式的分母不能为0;

(3)当函数表达式是二次根式时,被开方数非负.

12.如果 ,那么 =1.

考点: 函数值.

分析: 把自变量的值代入函数关系式计算即可得解.

解答: 解:f( )= =1.

故答案为:1.

点评: 本题考查了函数值求解,准确计算是解题的关键.

13.在实数范围内分解因式:2x2﹣x﹣2=2(x﹣ )(x﹣ ).

考点: 实数范围内分解因式;因式分解-十字相乘法等.

分析: 因为2x2﹣x﹣2=0的两根为x1= ,x2= ,所以2x2﹣x﹣2=2(x﹣ )(x﹣ ).

解答: 解:2x2﹣x﹣2=2(x﹣ )(x﹣ ).

点评: 先求出方程2x2﹣x﹣2=0的两个根,再根据ax2+bx+c=a(x﹣x1)(x﹣x2)即可因式分解.

14.经过A、B两点的圆的圆心的轨迹是线段AB的垂直平分线.

考点: 轨迹.

分析: 要求作经过已知点A和点B的圆的圆心,则圆心应满足到点A和点B的距离相等,从而根据线段的垂直平分线性质即可求解.

解答: 解:根据同圆的半径相等,则圆心应满足到点A和点B的距离相等,即经过已知点A和点B的圆的圆心的轨迹是线段AB的垂直平分线.

故答案为:线段AB的垂直平分线.

点评: 此题考查了点的轨迹问题,熟悉线段垂直平分线的性质是解题关键.

15.已知直角坐标平面内两点A(4,﹣1)和B(﹣2,7),那么A、B两点间的距离等于10.

考点: 两点间的距离公式.

分析: 根据两点间的距离公式进行计算,即A(x,y)和B(a,b),则AB= .

解答: 解:A、B两点间的距离为: = =10.

故答案是:10.

点评: 此题考查了坐标平面内两点间的距离公式,能够熟练运用公式进行计算.

16.请写出符合以下条件的一个函数的解析式y=﹣x+4(答案不).

①过点(3,1);②当x>0时,y随x的增大而减小.

考点: 一次函数的性质.

专题: 开放型.

分析: 根据“y随x的增大而减小”所写函数的k值小于0,所以只要再满足点(3,1)即可.

解答: 解:根据题意,所写函数k<0,

例如:y=﹣x+4,

此时当x=3时,y=﹣1+4=3,

经过点(3,1).

所以函数解析式为y=﹣x+4(答案不).

点评: 本题主要考查一次函数的性质,是开放性题目,答案不,只要满足条件即可.

17.如图,已知OP平分∠AOB,∠AOB=60°,CP=4,CP∥OA,PD⊥OA于点D,PE⊥OB于点E.如果点M是OP的中点,则DM的长为2 .

考点: 角平分线的性质;直角三角形斜边上的中线.

分析: 根据角平分线性质得出PD=PE,根据平行线性质和角平分线定义、三角形外角性质求出∠PCE=60°,角直角三角形求出PE,得出PD长,求出OP,即可求出答案.

解答: 解:∵OP平分∠AOB,∠AOB=60°,

∴∠AOP=∠BOP=30°,

∵PD⊥OA,PE⊥OB,

∴PD=PE,

∵CP∥OA,∠AOP=∠BOP=30°,

∴∠CPO=∠AOP=30°,

∴∠PCE=30°+30°=60°,

在Rt△PCE中,PE=CP×sin60°=4× =2 ,

即PD=2 ,

∵在Rt△AOP中,∠ODP=90°,∠DOP=30°,PD=2 ,

∴OP=2PD=4 ,

∵M为OP中点,

∴DM= OP=2 ,

故答案为:2 .

点评: 本题考查了角平分线性质,平行线的性质,三角形外角性质,直角三角形斜边上中线性质,含30度角的直角三角形性质,解直角三角形的应用,题目比较典型,综合性比较强.

18.如图,矩形ABCD中,AB=6,BC=8,点E是BC边上一点,连接AE,把∠B沿AE折叠,使点B落在点B′处,当△CEB′为直角三角形时,BE的长为3或6.

考点: 翻折变换(折叠问题).

分析: 当△CEB′为直角三角形时,有两种情况:

①当点B′落在矩形内部时,如答图1所示.

连结AC,先利用勾股定理计算出AC=10,根据折叠的性质得∠AB′E=∠B=90°,而当△CEB′为直角三角形时,只能得到∠EB′C=90°,所以点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,则EB=EB′,AB=AB′=6,可计算出CB′=4,设BE=x,则EB′=x,CE=8﹣x,然后在Rt△CEB′中运用勾股定理可计算出x.

②当点B′落在AD边上时,如答图2所示.此时四边形ABEB′为正方形.

解答: 解:当△CEB′为直角三角形时,有两种情况:

①当点B′落在矩形内部时,如答图1所示.

连结AC,

在Rt△ABC中,AB=6,BC=8,

∴AC= =10,

∵∠B沿AE折叠,使点B落在点B′处,

∴∠AB′E=∠B=90°,

当△CEB′为直角三角形时,只能得到∠EB′C=90°,

∴点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,如图,

∴EB=EB′,AB=AB′=6,

∴CB′=10﹣6=4,

设BE=x,则EB′=x,CE=8﹣x,

在Rt△CEB′中,

∵EB′2+CB′2=CE2,

∴x2+42=(8﹣x)2,

解得x=3,

∴BE=3;

②当点B′落在AD边上时,如答图2所示.

此时ABEB′为正方形,

∴BE=AB=6.

综上所述,BE的长为3或6.

故答案为:3或6.

点评: 本题考查了折叠问题:折叠前后两图形全等,即对应线段相等;对应角相等.也考查了矩形的性质以及勾股定理.注意本题有两种情况,需要分类讨论,避免漏解.

三、简答题:(每题6分,共36分)

19.化简: .

考点: 二次根式的加减法.

分析: 先把各根式化为最简二次根式,再合并同类项即可.

解答: 解:原式= •2 +8a•﹣a2•

=a +2a ﹣a

=2a .

点评: 本题考查的是二次根式的加减法,熟知二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变是解答此题的关键.

20.已知:关于x的一元二次方程(m﹣1)x2﹣2mx+m+3=0.当m为何值时,方程有两个实数根?

考点: 根的判别式;一元二次方程的定义.

分析: (m﹣1)x2﹣2mx+m+3=0,方程有两个实数根,从而得出△≥0,即可解出m的范围.

解答: 解:∵方程有两个实数根,∴△≥0;

(﹣2m)2﹣4(m﹣1)(m+3)≥0;

∴ ;

又∵方程是一元二次方程,∴m﹣1≠0;

解得m≠1;

∴当 且m≠1时方程有两个实数根.

点评: 本题考查了根的判别式以及一元二次方程的定义,总结:一元二次方程根的情况与判别式△的关系:

(1)△>0⇔方程有两个不相等的实数根;

(2)△=0⇔方程有两个相等的实数根;

(3)△<0⇔方程没有实数根.

21.如图,已知点P(x,y)是反比例函数图象上一点,O是坐标原点,PA⊥x轴,S△PAO

=4,且图象经过(1,3m﹣1);求:

(1)反比例函数解析式.

(2)m的值.

考点: 待定系数法求反比例函数解析式;反比例函数系数k的几何意义.

分析: (1)此题可从反比例函数系数k的几何意义入手,△PAO的面积为点P向两条坐标轴作垂线,与坐标轴围成的矩形面积的一半即S= |k|,再结合反比例函数所在的象限确定出k的值,则反比例函数的解析式即可求出;

(2)将(1,3m﹣1)代入解析式即可得出m的值.

解答: 解:(1)设反比例函数解析式为 ,

∵过点P(x,y),

∴ xy=4,

∴xy=8,

∴k=xy=8,

∴反比例函数解析式是: ;

(2)∵图象经过(1,3m﹣1),

∴1×(3m﹣1)=8,

∴m=3.

点评: 本题主要考查了反比例函数 中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得三角形面积为 |k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.

22.假定甲乙两人在一次赛跑中,路程S(米)与时间t(秒)的关系式如图所示,那么可以知道:

(1)这是一次100米赛跑.

(2)甲乙两人中,先到达终点的是甲.

(3)乙在这次赛跑中的速度为8米/秒.

考点: 函数的图象.

分析: (1)根据函数图象的纵坐标,可得答案;

(2)根据函数图象的横坐标,可得答案;

(3)根据乙的路程除以乙的时间,可得答案.

解答: 解:(1)由纵坐标看出,这是一次 100米赛跑;

(2)由横坐标看出,先到达终点的是甲;

(3)由纵坐标看出,乙行驶的路程是100米,由横坐标看出乙用了12.5秒,

乙在这次赛跑中的速度为100÷12.5=8米/秒,

故答案为:100,甲,8米/秒.

点评: 本题考查了函数图象,观察函数图象的纵坐标得出路程,横坐标得出时间是解题关键.

23.已知:如图,在△ABC中,AD是BC边上的高,CE是中线,F是CE的中点,CD= AB,求证:DF⊥CE.

考点: 直角三角形斜边上的中线;等腰三角形的判定与性质.

专题: 证明题.

分析: 连接DE,根据直角三角形斜边上的中线等于斜边的一半可得DE= AB,再求出DE=CD,然后根据等腰三角形三线合一的性质证明即可.

解答: 证明:连接DE,

∵AD是BC边上的高,在Rt△ADB中,CE是中线,

∴DE= AB,

∵CD= AB,

∴DC=DE,

∵F是CE中点,

∴DF⊥CE.

点评: 本题考查了直角三角形斜边上的中线等于斜边的一半的性质,等腰三角形三线合一的性质,熟记性质并作辅助线构造出等腰三角形是解题的关键.

24.已知:如图,在Rt△ABC中,∠ACB=90°,∠BAC=30°,以AC为边作等边△ACD,并作斜边AB的垂直平分线EH,且EB=AB,联结DE交AB于点F,求证:EF=DF.

考点: 全等三角形的判定与性质;线段垂直平分线的性质;含30度角的直角三角形.

专题: 证明题.

分析: 根据直角三角形性质和线段垂直平分线求出BC= AB,BH= AB,推出BC=BH,推出Rt△ACB≌Rt△EHB,根据全等得出EH=AC,求出EH=AD,∠CAD=60°,∠BAD=90°,根据AAS推出△EHF≌△DAF,根据全等三角形的性质得出即可.

解答: 证明:∵在Rt△ABC中,∠BAC=30°,

∴BC= AB,

∵EH垂直平分AB,

∴BH= AB,

∴BC=BH,

在Rt△ACB和Rt△EHB中,

∴Rt△ACB≌Rt△EHB(HL),

∴EH=AC,

∵等边△ACD中,AC=AD,

∴EH=AD,∠CAD=60°,∠BAD=60°+30°=90°,

在△EHF和△DAF中,

∴△EHF≌△DAF (AAS)

∴EF=DF.

点评: 本题考查了线段垂直平分线性质,等边三角形的性质,含30度角的直角三角形的性质,全等三角形的性质和判定的应用,能综合运用性质进行推理是解此题的关键,难度适中.

四、解答题:(每题8分,共16分)

25.如图,直线y= x与双曲线y= (k>0)交于A点,且点A的横坐标为4,双曲线y= (k>0)上有一动点C(m,n),(0<m<4),过点A作x轴垂线,垂足为B,过点C作x轴垂线,垂足为D,连接OC.

(1)求k的值.

(2)设△COD与△AOB的重合部分的面积为S,求S关于m的函数解析式.

(3)连接AC,当第(2)问中S的值为1时,求△OAC的面积.

考点: 反比例函数与一次函数的交点问题.

分析: (1)由题意列出关于k的方程,求出k的值,即可解决问题.

(2)借助函数解析式,运用字母m表示DE、OD的长度,即可解决问题.

(3)首先求出m的值,求出△COD,△AOB的面积;求出梯形ABDC的面积,即可解决问题.

解答: 解:(1)设A点的坐标为(4,λ);

由题意得: ,解得:k=8,

即k的值=8.

(2)如图,设E点的坐标为E(m,n).

则n= m,即DE= m;而OD=m,

∴S= OD•DE= m× m= ,

即S关于m的函数解析式是S= .

(3)当S=1时, =1,解得m=2或﹣2(舍去),

∵点C在函数y= 的图象上,

∴CD= =4;由(1)知:

OB=4,AB=2;BD=4﹣2=2;

∴ =6,

=4;

∴S△AOC=S梯形ABDC+S△COD﹣S△AOB

=6+4﹣4=6.

点评: 该题主要考查了一次函数与反比例函数图象的交点问题;解题的关键是数形结合,灵活运用方程、函数等知识来分析、判断、求解或证明.

26.如图,正方形ABCD的边长为4厘米,(对角线BD平分∠ABC)动点P从点A出发沿AB边由A向B以1厘米/秒的速度匀速移动(点P不与点A、B重合),动点Q从点B出发沿折线BC﹣CD以2厘米/秒的速度匀速移动.点P、Q同时出发,当点P停止运动,点Q也随之停止.联结AQ,交BD于点E.设点P运动时间为t秒.

(1)用t表示线段PB的长;

(2)当点Q在线段BC上运动时,t为何值时,∠BEP和∠BEQ相等;

(3)当t为何值时,P、Q之间的距离为2 cm.

考点: 四边形综合题.

分析: (1)由正方形的性质和已知条件即可得出结果;

(2)由正方形的性质得出∠PBE=∠QBE,由AAS证明△BEP≌△BEQ,得出对应边相等BP=BQ,得出方程,解方程即可;

(3)分两种情况讨论:①当0<t≤2时;②当2<t<4时;由勾股定理得出方程,解方程即可.

解答: 解:(1)PB=AB﹣AP,

∵AB=4,AP=1×t=t,

∴PB=4﹣t;

(2)t= 时,∠BEP和∠BEQ相等;理由如下:

∵四边形ABCD正方形,

∴对角线BD平分∠ABC,

∴∠PBE=∠QBE,

当∠BEP=∠BEQ时,

在△BEP与△BEQ中, ,

∴△BEP≌△BEQ(AAS),

∴BP=BQ,

即:4﹣t=2t,

解得:t= ;

(3)分两种情况讨论:

①当0<t≤2时;(即当P点在AB上,Q点在BC上运动时),

连接PQ,如图1所示:

根据勾股定理得: ,

即(4﹣t)2+(2t)2=(2 )2,

解得:t=2或t=﹣ (负值舍去);

②当2<t<4时,(即当P点在AB上,Q点在CD上运动时),

作PM⊥CD于M,

如图2所示:

则PM=BC=4,CM=BP=4﹣t,

∴MQ=2t﹣4﹣(4﹣t)=3t﹣8,

根据勾股定理得:MQ2+PM2=PQ2,

即 ,

解得t= 或t=2(舍去);

综上述:当t=2或 时;PQ之间的距离为2 cm.

点评: 本题是四边形综合题目,考查了正方形的性质、全等三角形的判定与性质、勾股定理、解方程等知识;本题难度较大,综合性强,特别是(3)中,需要进行分类讨论,根据勾股定理得出方程,解方程才能得出结果.

以上就是初二期末考试试卷数学的全部内容,(3)判断点E是否在这个函数的图象上 21、(7分)某校八年级学生开展踢毽子比赛活动,每班派5名学生参加.按团体总分多少排列名次,在规定时间每人踢100个以上(含100个)为优秀。

猜你喜欢