二年级数学知识点?..那么,二年级数学知识点?一起来了解一下吧。
教学目标 1.知识与能力:能正确读写钟面时刻,知道 1 时=60 分,初步建立时间观念,并通过观察、操作、思考、讨论等活动,初步培养学生的探索意识和合作学 习的意识.2.过程与方法:通过小组学习活动,给予学生充足的独立思考和探索交流的时 间.同时,借助课件直观形象的动态演示,加深学生的理解和掌握,提高学 生的学习兴趣和学习的主动积极性.3.情感、态度与价值观:教育学生要珍惜时间,养成良好的学习生活习惯,进 一步提高抓紧时间、勤奋学习的自觉性和积极性.
教学重点 重点:教学重点:会读、写钟面时刻并掌握时间单位的进率 教学难点 难点:教学难点:知道 1 时=60 分
教学准备:教师:多媒体课件、钟面模型 学生:钟面模型 创设情境,激趣导入:一、创设情境,激趣导入:1、同学们,你们喜欢动画片吗?(喜欢!)你们看这是谁呀?(蓝猫!)(出 示课件——蓝猫) 蓝猫给我们带来了一个老朋友,你们还认识它吗?它能帮助我们干什么呢?(认 识时间)今天这节课我们和蓝猫一起,再一次走进有趣的时间王国,让我们进一 步来认识时间吧!探索交流,解决问题.二、探索交流,解决问题.请看大屏幕,仔细观察钟面,你能说说钟面上有什么吗?课件出示钟面图,生答:钟面上有.同学们观察的非常仔细!钟面上还有 12 个数字,刚才同学们说钟面上有大格,到底有多少个呢?咱们一起来数一数.同学们说还有小格,每个大格里有多少小 格呢?拿出你的钟面数一数,每个大格里有几个小格,任意找出一个大格数一数.生充分回答.请同学们看大屏幕,从 12 到 1 有几个小格,从数字 1 到 2 从数字 12 到 2 有几个小格?生 10 个,从 12 到 3 有几个小格?你是怎样知道的?生一个一个数的,5 个 5 个数的.那你能说出每个大格所对应的小格数吗?课 件出示,钟面对应的小格数,钟面上有 60 个小格.时针从 12 走到 1 经过了一个大格也就是一个小时,那么时针从 1 走到了 2 是几 个小时?时针从 4 走到也是一小时?你还能说出时针从几走到几也是一小时 学生充分的说 同学们说的真不错,我们已经知道时针走一大格时间经过一小时,那么分针走一 小格就是 1 分钟.演示:分针每走一小格就是 1 分.
《认识时间》一课的教学是在一年级上册认识钟表的基础上进一步认识时间,是本学期的一个难点。本节课的教学目标是让学生能够用5分5分数的方法认读时间,并通过实际的操作,知道1时=60分。由于时间是一个很抽象的概念,学生难以理解,因此,教学时,我注意创造机会设计学生动手的环节,并借助多媒体课件的资源进行辅助教学,帮助学生更好地理解时间概念。
教学伊始,我利用闹钟的“滴答”声引出学生熟悉的钟表,并出示生活中的数学中的图片,使学生感受到时间与生活的关系,并提高了学生学习数学的兴趣。
新授部分分为这几个层次:首先,在屏幕上展示了一个钟面,让学生清楚地看到钟面上有12个数、指针和格子。让学生了解到12个数字把钟面分成了12个大格,每个大格又被分成了5个小格。然后,再通过演示时针走一大格,分针走一小格的过程,让学生清楚地认识了时和分。接着,又通过课件的动画演示和色彩的变化,时针走一大格,分针正好走一周的过程,让学生得出1时等于60分,较好地突破了本节课的重难点。
学生在数学学习中不断地掌握新知识,但有的知识光靠教师苦口婆心地讲,学生反复机械地训练,耗费了大量的时间精力,学生也不一定能掌握得好,在教学中,我认为不能单靠教师的讲授,而应把更多的时间让给学生自己探索和交流。因此,这节课中,我注意遵循低年级学生的年龄特点及认知规律,从学生的生活实际出发,创设情境,引导学生主动参与知识的形成过程。设计了各种活动,让学生看看、说说、做做,使学生学得主动。比如:我组织了拨钟活动,让学生根据老师的要求,拨动钟面。在教学1小时=60分时让学生通过直观的实物操作,对时分关系一目了然。通过实际的动手操作,提高了学生的学习兴趣,学生也进一步强化了对时间的认识和理解。
但是,虽然我设计有拨钟这一活动,但是拨的形式还是比较单一,都是老师说学生拨,其实教师可以放手让同学间相互合作:一个人说时间另一个人拨钟,或者一个人拨钟,另一个人说出钟面上的时间,这样学生的参与度会更高,同时也能培养学生的合作交流能力。
一节课的时间是非常有限的,在课中应把握好每分每秒,使学生的学习更有效,这要求教师教学语言要简洁精练,引导要清楚明了,但这点我做得不够好,教学语言不够精练,引导的不够细,使得时间的有效性没有把握住,导致课还没完就匆匆结束了。
总之,信任学生,凡是能让学生自己学会的,让学生自己去学会;凡是能让学生自己去做的,让学生自己去做;凡是能让学生自己去讲的,让学生自己去讲。让学生真正参与到课堂学习中,做学习的主人。
今天,爷爷去买了一箱啤酒来,准备招待客人。晚上,客人们来了,爸爸妈妈端出瓜子、花生、橘子,他们坐在一起有说有笑的。开饭了,我们大家围着桌子坐了下来。大人们有的喝啤酒,有的喝老酒,小孩子都喝饮料。大家吃得津津有味。吃完饭,客人们走了,我发现爷爷买的那箱啤酒是这样装的,每排6瓶,共4排。我用口诀“四六二十四”很快就算出整箱啤酒原来共24瓶,现在箱子里还有18瓶,那客人们总共喝了6瓶啤酒。我把空瓶数了数,果然是6个。
1 正方形 C周长 S面积 a边长 周长=边长×4 C=4a 面积=边长×边长 S=a×a 2 正方体 V:体积 a:棱长 表面积=棱长×棱长×6 S表=a×a×6 体积=棱长×棱长×棱长 V=a×a×a 3 长方形 C周长 S面积 a边长 周长=(长+宽)×2 C=2(a+b) 面积=长×宽 S=ab 4 长方体 V:体积 s:面积 a:长 b: 宽 h:高 (1)表面积(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh) (2)体积=长×宽×高 V=abh 5 三角形 s面积 a底 h高 面积=底×高÷2 s=ah÷2 三角形高=面积 ×2÷底 三角形底=面积 ×2÷高 6 平行四边形 s面积 a底 h高 面积=底×高 s=ah 7 梯形 s面积 a上底 b下底 h高 面积=(上底+下底)×高÷2 s=(a+b)× h÷2 8 圆形 S面积 C周长 ∏ d=直径 r=半径 (1)周长=直径×∏=2×∏×半径 C=∏d=2∏r (2)面积=半径×半径×∏ 9 圆柱体 v:体积 h:高 s;底面积 r:底面半径 c:底面周长 (1)侧面积=底面周长×高 (2)表面积=侧面积+底面积×2 (3)体积=底面积×高 (4)体积=侧面积÷2×半径 10 圆锥体 v:体积 h:高 s;底面积 r:底面半径 体积=底面积×高÷3 1 每份数×份数=总数 总数÷每份数=份数 总数÷份数=每份数 2 1倍数×倍数=几倍数 几倍数÷1倍数=倍数 几倍数÷倍数=1倍数 3 速度×时间=路程 路程÷速度=时间 路程÷时间=速度 4 单价×数量=总价 总价÷单价=数量 总价÷数量=单价 5 工作效率×工作时间=工作总量 工作总量÷工作效率=工作时间 工作总量÷工作时间=工作效率 6 加数+加数=和 和-一个加数=另一个加数 7 被减数-减数=差 被减数-差=减数 差+减数=被减数 8 因数×因数=积 积÷一个因数=另一个因数 9 被除数÷除数=商 被除数÷商=除数 商×除数=被除数 小学数学图形计算公式 1 正方形 C周长 S面积 a边长 周长=边长×4 C=4a 面积=边长×边长 S=a×a 2 正方体 V:体积 a:棱长 表面积=棱长×棱长×6 S表=a×a×6 体积=棱长×棱长×棱长 V=a×a×a 3 长方形 C周长 S面积 a边长 周长=(长+宽)×2 C=2(a+b) 面积=长×宽 S=ab 4 长方体 V:体积 s:面积 a:长 b: 宽 h:高 (1)表面积(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh) (2)体积=长×宽×高 V=abh 5 三角形 s面积 a底 h高 面积=底×高÷2 s=ah÷2 三角形高=面积 ×2÷底 三角形底=面积 ×2÷高 6 平行四边形 s面积 a底 h高 面积=底×高 s=ah 7 梯形 s面积 a上底 b下底 h高 面积=(上底+下底)×高÷2 s=(a+b)× h÷2 8 圆形 S面积 C周长 ∏ d=直径 r=半径 (1)周长=直径×∏=2×∏×半径 C=∏d=2∏r (2)面积=半径×半径×∏ 9 圆柱体 v:体积 h:高 s;底面积 r:底面半径 c:底面周长 (1)侧面积=底面周长×高 (2)表面积=侧面积+底面积×2 (3)体积=底面积×高 (4)体积=侧面积÷2×半径 10 圆锥体 v:体积 h:高 s;底面积 r:底面半径 体积=底面积×高÷3 总数÷总份数=平均数 和差问题的公式 (和+差)÷2=大数 (和-差)÷2=小数 和倍问题 和÷(倍数-1)=小数 小数×倍数=大数 (或者 和-小数=大数) 差倍问题 差÷(倍数-1)=小数 小数×倍数=大数 (或 小数+差=大数) 植树问题 1 非封闭线路上的植树问题主要可分为以下三种情形: ⑴如果在非封闭线路的两端都要植树,那么: 株数=段数+1=全长÷株距-1 全长=株距×(株数-1) 株距=全长÷(株数-1) ⑵如果在非封闭线路的一端要植树,另一端不要植树,那么: 株数=段数=全长÷株距 全长=株距×株数 株距=全长÷株数 ⑶如果在非封闭线路的两端都不要植树,那么: 株数=段数-1=全长÷株距-1 全长=株距×(株数+1) 株距=全长÷(株数+1) 2 封闭线路上的植树问题的数量关系如下 株数=段数=全长÷株距 全长=株距×株数 株距=全长÷株数 盈亏问题 (盈+亏)÷两次分配量之差=参加分配的份数 (大盈-小盈)÷两次分配量之差=参加分配的份数 (大亏-小亏)÷两次分配量之差=参加分配的份数 相遇问题 相遇路程=速度和×相遇时间 相遇时间=相遇路程÷速度和 速度和=相遇路程÷相遇时间 追及问题 追及距离=速度差×追及时间 追及时间=追及距离÷速度差 速度差=追及距离÷追及时间 流水问题 顺流速度=静水速度+水流速度 逆流速度=静水速度-水流速度 静水速度=(顺流速度+逆流速度)÷2 水流速度=(顺流速度-逆流速度)÷2 浓度问题 溶质的重量+溶剂的重量=溶液的重量 溶质的重量÷溶液的重量×100%=浓度 溶液的重量×浓度=溶质的重量 溶质的重量÷浓度=溶液的重量 利润与折扣问题 利润=售出价-成本 利润率=利润÷成本×100%=(售出价÷成本-1)×100% 涨跌金额=本金×涨跌百分比 折扣=实际售价÷原售价×100%(折扣<1) 利息=本金×利率×时间 税后利息=本金×利率×时间×(1-20%) 每份数×份数=总数 总数÷每份数=份数 总数÷份数=每份数 2、1倍数×倍数=几倍数 几倍数÷1倍数=倍数 几倍数÷倍数=1倍数 3、速度×时间=路程 路程÷速度=时间 路程÷时间=速度 4、单价×数量=总价 总价÷单价=数量 总价÷数量=单价 5、工作效率×工作时间=工作总量 工作总量÷工作效率=工作时间 工作总量÷工作时间=工作效率 6、加数+加数=和 和-一个加数=另一个加数 7、被减数-减数=差 被减数-差=减数 差+减数=被减数 8、因数×因数=积 积÷一个因数=另一个因数 9、被除数÷除数=商 被除数÷商=除数 商×除数=被除数 小学数学图形计算公式 1、正方形 (C:周长 S:面积 a:边长) 周长=边长×4 C=4a 面积=边长×边长 S=a×a 2、正方体 (V:体积 a:棱长 ) 表面积=棱长×棱长×6 S表=a×a×6 体积=棱长×棱长×棱长 V=a×a×a 3、长方形( C:周长 S:面积 a:边长 ) 周长=(长+宽)×2 C=2(a+b) 面积=长×宽 S=ab 4、长方体 (V:体积 s:面积 a:长 b: 宽 h:高) (1)表面积(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh) (2)体积=长×宽×高 V=abh 5、三角形 (s:面积 a:底 h:高) 面积=底×高÷2 s=ah÷2 三角形高=面积 ×2÷底 三角形底=面积 ×2÷高 6、平行四边形 (s:面积 a:底 h:高) 面积=底×高 s=ah 7、梯形 (s:面积 a:上底 b:下底 h:高) 面积=(上底+下底)×高÷2 s=(a+b)× h÷2 8、圆形 (S:面积 C:周长 л d=直径 r=半径) (1)周长=直径×л=2×л×半径 C=лd=2лr (2)面积=半径×半径×л 9、圆柱体 (v:体积 h:高 s:底面积 r:底面半径 c:底面周长) (1)侧面积=底面周长×高=ch(2лr或лd) (2)表面积=侧面积+底面积×2 (3)体积=底面积×高 (4)体积=侧面积÷2×半径 10、圆锥体 (v:体积 h:高 s:底面积 r:底面半径) 体积=底面积×高÷3 11、总数÷总份数=平均数 12、和差问题的公式 (和+差)÷2=大数 (和-差)÷2=小数 13、和倍问题 和÷(倍数-1)=小数 小数×倍数=大数 (或者 和-小数=大数) 14、差倍问题 差÷(倍数-1)=小数 小数×倍数=大数 (或 小数+差=大数) 15、相遇问题 相遇路程=速度和×相遇时间 相遇时间=相遇路程÷速度和 速度和=相遇路程÷相遇时间 16、浓度问题 溶质的重量+溶剂的重量=溶液的重量 溶质的重量÷溶液的重量×100%=浓度 溶液的重量×浓度=溶质的重量 溶质的重量÷浓度=溶液的重量 17、利润与折扣问题 利润=售出价-成本 利润率=利润÷成本×100%=(售出价÷成本-1)×100% 涨跌金额=本金×涨跌百分比 利息=本金×利率×时间 税后利息=本金×利率×时间×(1-20%) 常用单位换算 长度单位换算 1千米=1000米 1米=10分米 1分米=10厘米 1米=100厘米 1厘米=10毫米 面积单位换算 1平方千米=100公顷 1公顷=10000平方米 1平方米=100平方分米 1平方分米=100平方厘米 1平方厘米=100平方毫米 体(容)积单位换算 1立方米=1000立方分米 1立方分米=1000立方厘米 1立方分米=1升 1立方厘米=1毫升 1立方米=1000升 重量单位换算 1吨=1000 千克 1千克=1000克 1千克=1公斤 人民币单位换算 1元=10角 1角=10分 1元=100分 时间单位换算 1世纪=100年 1年=12月 大月(31天)有:1 8 月 小月(30天)的有:4 9 月 平年2月28天, 闰年2月29天 平年全年365天, 闰年全年366天 1日=24小时 1时=60分 1分=60秒 1时=3600秒220
加法交换率:a+b=b+a
加法结合率:a+b+c=a+(b+c)
乘法结合率:a×b×c=a×(b×c)
乘法交换率:a×b×c=a×c×b
乘法分配率:(a+b)×c=a×c+b×c
1 每份数×份数=总数
总数÷每份数=份数
总数÷份数=每份数
2 1倍数×倍数=几倍数
几倍数÷1倍数=倍数
几倍数÷倍数=1倍数
3 速度×时间=路程
路程÷速度=时间
路程÷时间=速度
4 单价×数量=总价
总价÷单价=数量
总价÷数量=单价
5 工作效率×工作时间=工作总量
工作总量÷工作效率=工作时间
工作总量÷工作时间=工作效率
6 加数+加数=和
和-一个加数=另一个加数
7 被减数-减数=差
被减数-差=减数
差+减数=被减数
8 因数×因数=积
积÷一个因数=另一个因数
9 被除数÷除数=商
被除数÷商=除数
商×除数=被除数
小学数学图形计算公式
1 正方形
C周长 S面积 a边长
周长=边长×4
C=4a
面积=边长×边长
S=a×a
2 正方体
V:体积 a:棱长
表面积=棱长×棱长×6
S表=a×a×6
体积=棱长×棱长×棱长
V=a×a×a
3 长方形
C周长 S面积 a边长
周长=(长+宽)×2
C=2(a+b)
面积=长×宽
S=ab
4 长方体
V:体积 s:面积 a:长 b: 宽 h:高
(1)表面积(长×宽+长×高+宽×高)×2
S=2(ab+ah+bh)
(2)体积=长×宽×高
V=abh
5 三角形
s面积 a底 h高
面积=底×高÷2
s=ah÷2
三角形高=面积 ×2÷底
三角形底=面积 ×2÷高
6 平行四边形
s面积 a底 h高
面积=底×高
s=ah
7 梯形
s面积 a上底 b下底 h高
面积=(上底+下底)×高÷2
s=(a+b)× h÷2
8 圆形
S面积 C周长 ∏ d=直径 r=半径
(1)周长=直径×∏=2×∏×半径
C=∏d=2∏r
(2)面积=半径×半径×∏
9 圆柱体
v:体积 h:高 s;底面积 r:底面半径 c:底面周长
(1)侧面积=底面周长×高
(2)表面积=侧面积+底面积×2
(3)体积=底面积×高
(4)体积=侧面积÷2×半径
10 圆锥体
v:体积 h:高 s;底面积 r:底面半径
体积=底面积×高÷3
总数÷总份数=平均数
和差问题的公式
(和+差)÷2=大数
(和-差)÷2=小数
和倍问题
和÷(倍数-1)=小数
小数×倍数=大数
(或者 和-小数=大数)
差倍问题
差÷(倍数-1)=小数
小数×倍数=大数
(或 小数+差=大数)
植树问题
1 非封闭线路上的植树问题主要可分为以下三种情形:
⑴如果在非封闭线路的两端都要植树,那么:
株数=段数+1=全长÷株距-1
全长=株距×(株数-1)
株距=全长÷(株数-1)
⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
⑶如果在非封闭线路的两端都不要植树,那么:
株数=段数-1=全长÷株距-1
全长=株距×(株数+1)
株距=全长÷(株数+1)
2 封闭线路上的植树问题的数量关系如下
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
盈亏问题
(盈+亏)÷两次分配量之差=参加分配的份数
(大盈-小盈)÷两次分配量之差=参加分配的份数
(大亏-小亏)÷两次分配量之差=参加分配的份数
相遇问题
相遇路程=速度和×相遇时间
相遇时间=相遇路程÷速度和
速度和=相遇路程÷相遇时间
追及问题
追及距离=速度差×追及时间
追及时间=追及距离÷速度差
速度差=追及距离÷追及时间
流水问题
顺流速度=静水速度+水流速度
逆流速度=静水速度-水流速度
静水速度=(顺流速度+逆流速度)÷2
水流速度=(顺流速度-逆流速度)÷2
浓度问题
溶质的重量+溶剂的重量=溶液的重量
溶质的重量÷溶液的重量×100%=浓度
溶液的重量×浓度=溶质的重量
溶质的重量÷浓度=溶液的重量
利润与折扣问题
利润=售出价-成本
利润率=利润÷成本×100%=(售出价÷成本-1)×100%
涨跌金额=本金×涨跌百分比
折扣=实际售价÷原售价×100%(折扣<1)
利息=本金×利率×时间
税后利息=本金×利率×时间×(1-20%)
以上就是二年级数学知识点的全部内容。