七年级下册数学书概念?一:关于正、负数的理解 对于正数与负数,不能简单的理解为:带“+”的就是正数,带“-”的就是负数,例如-a不一定就是负数。用正数与负数表示相反意义的量,习惯上把增加、盈利等规定为正,它们相反的量规定为负,正、负是相对而言的。二:有理数的分类 有理数分为整数和分数 整数分为正整数、那么,七年级下册数学书概念?一起来了解一下吧。
1.对顶角相等
2.同位角 定义
如图,两个都在截线的同旁,又分别处在另两条直线相同的一侧位置。具有这样位置关系的一对角叫做同位角
3.内错角的定义
两条直线AB和CD被第三条直线EF所截,构成了八个角,如果两个角都在两直线的内侧,并且在第三条直线的两侧,那么这样的一对角叫做内错角。
4.同旁内角定义
同旁内角,“同旁”指在第三条直线的同侧;“内”指在被截两条直线之间。
两条直线被第三条直线所截所形成的八个角中,有四对同位角,两对内错角,两对同旁内角。
【平行线的特征】
1.两条直线平行,同旁内角互补。
2.两条直线平行,内错角相等。
3.两条直线平行,同位角相等。
【平行线的判定】
1.同旁内角互补,两直线平行。
2.内错角相等,两直线平行。
3.同位角相等,两直线平行。
4.如果两条直线同时与第三条直线平行,那么这两条直线互相平行。
第七章
三角形
三条线段首尾顺次连结所组成的封闭图形叫做三角形。
三角形的性质
1.三角形的任何两边的和一定大于第三边 ,由此亦可证明得三角形的任意两边的差一定小于第三边。
2.三角形内角和等于180度
3.等腰三角形的顶角平分线,底边的中线,底边的高重合,即三线合一。
初一数学上册主要包括四个章节的内容;下册主要包括相六章内容。为帮助大家更好地掌握七年级数学每个章节的重要内容,我整理了一些知识点以供学习复习参考!
七年级数学上册知识点:第一章 有理数一、知识框架
二.知识概念
1.有理数:
(1)凡能写成 形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;p不是有理数;
(2)有理数的分类: ① ②2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.
3.相反数:
(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;
(2)相反数的和为0 ? a+b=0 ? a、b互为相反数.
4.绝对值:
(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;
(2) 绝对值可表示为: 或 ;绝对值的问题经常分类讨论;
5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数 > 0,小数-大数 < 0.
6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a≠0,那么 的倒数是 ;若ab=1? a、b互为倒数;若ab=-1? a、b互为负倒数.
7. 有理数加法法则:
(1)同号两数相加,取相同的符号,并把绝对值相加;
(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;
(3)一个数与0相加,仍得这个数.
8.有理数加法的运算律:
(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b)+c=a+(b+c).
9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b).
10 有理数乘法法则:
(1)两数相乘,同号为正,异号为负,并把绝对值相乘;
(2)任何数同零相乘都得零;
(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.
11 有理数乘法的运算律:
(1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc);
(3)乘法的分配律:a(b+c)=ab+ac .
12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数, .
13.有理数乘方的法则:
(1)正数的任何次幂都是正数;
(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n为正奇数时: (-a)n=-an或(a -b)n=-(b-a)n , 当n为正偶数时: (-a)n =an 或 (a-b)n=(b-a)n .
14.乘方的定义:
(1)求相同因式积的运算,叫做乘方;
(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;
15.科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,这种记数法叫科学记数法.
16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.
17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.
18.混合运算法则:先乘方,后乘除,最后加减.
本章内容要求学生正确认识有理数的概念,在实际生活和学习数轴的基础上,理解正负数、相反数、绝对值的意义所在。
七年级下册数学所有概念总结
一、数与代数
1. 有理数及其运算
* 有理数概念:包括整数和分数,整数包括正整数、零和负整数。
* 运算规则:包括加法、减法、乘法和除法的基本运算法则,了解运算顺序。
2. 整式的加减
* 整式概念:由常数、变量和加减乘方组成的数学表达式。
* 合并同类项:在整式中进行加减运算时,相同类型的项可以合并。
二、几何图形
1. 图形的初步认识
* 几何图形的分类:点、线、面、体的基本概念。
* 图形的性质:了解图形的基本性质,如平行、垂直等。
2. 平面图形的面积计算
* 三角形、四边形等平面图形的面积计算公式。
* 了解面积单位的换算。
三、统计与概率初步
1. 数据的收集与表示
* 数据收集方法:调查、实验、观察等。
* 数据表示方式:图表、统计表等。
2. 概率的初步认识
* 概率定义:某一事件发生的可能性。
1′对顶角的概念有两个:
① 两条直线相交成四个角,其中有公共顶点而没有公共边的两个角叫做对顶角;
② 一个角的两边分别是另一个角的两边的反向延长线,这两个角叫做对顶角.
实际上,两条直线相交,其中不相邻的两个角就是对顶角,相邻的角就是邻补角.
○2 对顶角的性质;对顶角相等.
○3 互为邻补角的两个角一定互补,但两个角互补不一定是互为邻补角;
○4 对顶角有一个公共顶点,没有公共边;邻补角有一个公共顶点,有一个公共边.
垂线的性质:
○1过直线外一点有且只有一条直线与已知直线垂直;
○2直线外一点与直线上各点连结的所有线段中,垂线段最短,简单说成:垂线段最短.
点到直线的距离定义:从直线外一点到这条直线的垂线段的长度叫做点到直线的距离.
4.平行公理(即平行线的基本性质)
经过直线外一点,有且只有一条直线与这条直线平行。由平行公理还可以得到一个推论——即平行线的基本性质二:
定理:如果两条直线都和第三条直线平行,那么这两条直线也互相平行。
平行线的判定
1.平行线的判定公理:两条直线被第三条直线所截,如果同位角相等,那么两条直线平行。
简单说成:同位角相等,两直线平行。
2.平行线的判定定理:两条直线被第三条直线所截,如果内错角相等,那么两条直线平行。
第一章是 整式的乘除
1 同底数幂的乘法
同底数幂相乘,底数不变,指数相加
2 幂的乘方与积的乘方
幂的乘方,底数不变,指数相乘积的乘方等于积中每个因式分别乘方
3 同底数幂的除法
同底数幂相除,底数不变,指数相减
a°=1(a≠0)
a的-p次方=a的p次方分之一(a≠0,p是正整数)
4 整式的乘法
单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式
单项式与多项式相乘,就是根据分配率用单项式去乘多项式的每一项,再把所得的积相加
多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加
5 平方差公式
(a+b)(a-b) =a的平方+ b的
平方 两数和与这两数差的积,等于它们的平方差
6 完全平方公式
(a+b)的平方=a 的平方+2ab+b的平方
(a-b)的平方=a 的平方-2ab+b的平方
7 整式的除法
单项式相除,把系数、同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式
多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加
求采纳
以上就是七年级下册数学书概念的全部内容,1、 单项式:数字与字母的积,叫做单项式。2、 多项式:几个单项式的和,叫做多项式。3、 整式:单项式和多项式统称整式。4、 单项式的次数:单项式中所有字母的指数的和叫单项式的次数。5、 多项式的次数:多项式中次数最高的项的次数,就是这个多项式的次数。6、 余角:两个角的和为90度,内容来源于互联网,信息真伪需自行辨别。如有侵权请联系删除。