当前位置: 首页 > 所有学科 > 数学

零五网初二数学课课练,零五网初一数学课课练上册

  • 数学
  • 2023-04-18
目录
  • 四上数学课课练答案零五网
  • 零五网初二数学同步答案
  • 零五网初二数学补充上册
  • 零五网八年级数学课课练
  • 六年级数学课课练上册零五网

  • 四上数学课课练答案零五网

    3 设单人间花x元,双人间花y元,那么由题意列方程:3x+6y=1020,x+5y=700,要求Z=5(x+y)

    有方程组,解出x和y的值带入Z就行了山芦。

    4 设从甲地到乙地的平地为x 千米,上坡为含唯腊y千米,下坡为z千米,那么列方程为:x+y+z=70,x/30+y/20+z/40=2.5

    那么从乙地到甲地,上坡为z,下坡为y,平地为x,那么列方程为:z/20+y/40+x/30=(120+18)/60

    三个未谈滑知数,三个方程解出x,y,z就可以了。

    零五网初二数学同步答案

    虽然知道,造成高二数学成绩不好的原因是多方面的,但最核心的一点是我们对相关知识的掌握还不够透彻。初二数学知识点归纳上册人教版有哪些?一起来看看初二数学知识点归纳上册人教版,欢迎查阅!

    初二数学知识点总结归纳

    运用公式x2 +(p+q)x+pq=(x+q)(x+p)进行氏橘因式分解要注意:

    1.必须先将常数项分解成两个因数的积,且这两个因数的代数和等于

    一次项的系数.

    2.将常数项分解成满足要求的两个因数积的多次尝试,一般步骤:

    ① 列出常数项分解成两个因数的积各种可能情况;

    ②尝试其中的哪两个因数的和恰好等于一次项系数.

    3.将原多项式分解成(x+q)(x+p)的形式.

    (七)分式的乘除法

    1.把一个分式的分子与分母的公因式约去,叫做分式的约分.

    2.分式进行约分的目的是要把这个分式化为最简分式.

    3.如果分式的分子或分母是多项式,可先考虑把它分别分解因式,得到因式乘积形式,再约去分子与分母的公因式.如果分子或分母中的多项式不能分解因式,此时就不能把分子、分母中的某些项单独约分.

    4.分式约分中注意正确运用乘方的符号法则,如x-y=-(y-x),(x-y)2=(y-x)2,

    (x-y)3=-(y-x)3.

    5.分式的分子或分母带符号的n次方,可按分式符号法则,变成整个分式的符号,然后再按-1的偶次方为正、奇次方为负来处理.当然,简单的分式之分子分母可直接乘方.

    6.注意混合运算中应先算括号,再算乘方,然后乘除,最后算加减.

    (八)分数的加减法

    1.通分与约分虽都是针对分式而言,但却是两种相反的变形.约分是针对一个分式而言,而通分是针对多个分式而言;约分是把分式化简,而通分是把分式化繁,从而把各分式的分母统一起来.

    2.通分和约分都是依据分式的基本性质进行变形,其共同点是保持分式的值不变.

    3.一般地,通分结果中,分母不展开而写成连乘积的形式,分子则乘出来写成多项式,为进一步运算作准备.

    4.通分的依据:分式的基本性质.

    5.通分的关键:确定几个分式的公分母.

    通常取各分母的所有因式的次幂的积作公分母,这样的公分母叫做最简公分母.

    6.类比分数的通分得到分式的通分:

    把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分.

    7.同分母分式的加减法的法则是:同分母分式相加减,分母不变,把分子相加减。

    同分母的分式加减运算,分母不变,把分子相加减,这就是把分式的运算转化为整式运算。

    8.异分母的分式加减法法则:异分母的分式相加减,先通分,变为同分母的分式,然后再加减.

    9.作为最后结果,如果是分式则应该是最简分式.

    (九)含有字母系数的一元一次方程

    1.含有字母系数的一元一次方程

    引例:一数的a倍(a≠0)等于b,求这个数。用x表示这个数,根据题意,可得方程 ax=b(a≠0)

    在这个方程中,x是未知数,a和b是用字培缓母表示的已知数。对x来说,字母a是x的系数,b是常数项。这个方程就是一个含有字母系数的一元一次方程。

    含有字母系数的方程的解法与以前学过的只含有数字系数的方程的解法相同,但必须特别注意:用含有字母的式子去乘或除方程的两边,这个式子的值不能等于零。

    10.同分母分式相加减,分母不变,只须将分子作加减运算,但注意每个分子是个整体,要适时添上括号.

    11.对于整式和分式之间的加减运算,则把整式看成一个整体,即看成是分母为1的分式,以便通分.

    12.异分母分式的加减运算,首先观察每个公式是否最简分式,能约分的先约分,使分式简化,然后再通分,这样可使运算简化.

    初二数学复习提纲方法

    一、克服心理疲劳

    第一,要有明确的学习目的。学习就像从河里抽水,动力越足,水流量越大。动力来源于目的,只有树立正确的学习目的,才会产生强大的学习动力;

    第二,要培养浓厚的学习兴趣。兴趣的形成与大脑皮层的兴奋中心相联系,并伴有愉快、喜悦、积极的情绪体验。而心理疲劳的产生正是大脑皮层抵制的消极情绪引配核模起的`。因此,培养自己的学习兴趣,是克服心理疲劳的关键所在。有了兴趣,学习才会有积极性、自觉性、主动性,才能使心理处于一种良好的竞技状态;

    第三,要注意学习的多样化,书本学习本身就是枯燥单调的,如果多次重复学习某门课程或章节内容,易使大脑皮层产生抑制,出现心理饱和,产生厌倦情绪。所以考生不妨将各门课程交替起来进行复习。

    二、战胜高原现象

    复习中的高原现象,是指在复习到一定时期时,往往停滞不前,不仅复习不见进步,反而有退步的现象。在高原期内,并非学习毫无进步,而是某部分进步,另外一些部分则退步,两者相抵,致使复习成效未从根本上发生变化,因而使人灰心失望。当考生在复习迎考过程中遭遇高原期时,切忌急躁或丧失信心,应找出学习方法、学习积极性等方面的原因。及时调整复习进度,在科学用脑、提高复习效率上多下功夫。

    三、重视复习“错误”

    如果在复习中不善于从错误中走出来,缺陷和漏洞就会越来越多,任其下去,最终就会蚁穴溃堤。在备考期间,要想降低错误率,除了及时订正、全面扎实复习之外,非常关键的问题就是找出原因,不断复习错误。即定期翻阅错题,回想错误的原因,并对各种错题及错误原因进行分类整理。对其中那些反复错误的问题还可考虑再做一遍,以绝“后患”。错误原因大致有:概念理解上的问题、粗心大意带来的问题以及书写潦草凌乱给自己带来的错觉问题等,从而有效地避免在考试时再犯同一类型的错误。

    四、把握心理特点搞好考前复习

    实践证明,一个人在气质、性格、心理稳定程度等因素也会影响考前复习。考生在复习迎考过程中,应根据自己的心理特点来制订复习迎考计划,根据自己的心态来调整复习的进度,选择与运用的复习方式方法,使自己的考前复习达到预期的效果。

    1、课本不容忽视

    对于初二的学生来说,都在学习新课,课本是大家都容易忽视的一个重要的复习资料。平时在学校的课堂上大家都会随堂记笔记,课本基本不会翻看,建议同学们在翻看笔记的同时,对照课本,把学过的知识点反复阅读、理解,并对照课后练习里的习题进行反复思考、琢磨、融会贯通,加深对知识点的理解。对于课本上的重点内容、重点例题也要着重记忆。

    2、错题本

    相信学习习惯好的学生都应该有一本错题本,把每次习题、作业、测试中的错题抄录下来,明确答案,找到错误原因,发现自己知识和能力上的薄弱点,经常拿出来翻看,遇到反复做错的题目,要主动和同学商量,向老师请教,彻底把题目弄懂、弄透,以免再犯同类错误。

    初二数学全册复习提纲

    第十一章 一次函数

    我们称数值变化的量为变量(variable)。

    有些量的数值是始终不变的,我们称它们为常量(constant)。

    在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有确定的值与其对应,那么我们说x是自变量(independentvariable),y是x的函数(function)。

    如果当x=a时y=b,那么b叫做当自变量的值为a时的函数值。

    形如y=kx(k是常数,k≠0)的函数,叫做正比例函数(proportional function),其中k叫做比例系数。

    形如y=kx+b(k,b是常数,k≠0)的函数,叫做一次函数(linear function)。正比例函数是一种特殊的一次函数。

    当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小。

    每个二元一次方程组都对应两个一次函数,于是也对应两条直线。从“形”的角度看,解方程组相当于确定两条直线交点的坐标。

    第十二章 数据的描述

    我们称落在不同小组中的数据个数为该组的频数(frequency),频数与数据总数的比为频率。

    常见的统计图:条形图(bar graph)(复合条形图)、扇形图(pie chart)、折线图、直方图(histogram)。

    条形图:描述各组数据的个数。

    复合条形图:不仅可以看出数据的情况,而且还可以对它们进行比较。

    扇形图:描述各组频数的大小在总数中所占的百分比。

    折线图:描述数据的变化趋势。

    直方图:能够显示各组频数分布的情况;易于显示各组之间频数的差别。

    在频数分布(frequency distribution)表中:我们把分成组的个数称为组数,每一组两个端点的差称为组距。

    求出各个小组两个端点的平均数,这些平均数称为组中值。

    第十三章 全等三角形

    能够完全重合的两个图形叫做全等形(congruent figures)。

    能够完全重合的两个三角形叫做全等三角形(congruent triangles)。

    全等三角形的性质:全等三角形对应边相等;全等三角形对应角相等。

    全等三角形全等的条件:三边对应相等的两个三角形全等。(SSS)

    两边和它们的夹角对应相等的两个三角形全等。(SAS)

    两角和它们的夹边对应相等的两个三角形全等。(ASA)

    两个角和其中一个角的对边对应相等的两个三角形全等。(AAS)

    角平分线的性质:角平分线上的点到角的两边的距离相等。

    到角两边的距离相等的点在角的平分线上。

    第十四章 轴对称

    经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线(perpendicular bisector)。

    轴对称图形的对称轴,是任何一对对应点所连接线段的垂直平分线。

    线段垂直平分线上的点与这条线段两个端点的距离相等。

    由一个平面图形得到它的轴对称图形叫做轴对称变换。

    等腰三角形的性质:

    等腰三角形的两个底角相等。(等边对等角)

    等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。(三线合一)(附:顶角+2底角=180°)

    如果一个三角形有两个角相等,那么这两个角所对的边也相等。(等角对等边)

    有一个角是60°的等腰三角形是等边三角形。

    在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。

    第十五章 整式

    式子是数或字母的积的式子叫做单项式(monomial)。单独的一个数或字母也是单项式。

    单项式中的数字因数叫做这个单项式的系数(coefficient)。

    一个单项式中,所有字母的指数的和叫做这个单项式的次数(degree)。

    几个单项式的和叫做多项式(polynomial)。每个单项式叫多项式的项(term),其中,不含字母的叫做常数项(constantterm)。

    多项式里次数的项的次数,就是这个多项式的次数。

    单项式和多项式统称整式(integral expression_r)。

    所含字母相同,并且相同字母的指数也相同的项叫做同类项。

    把多项式中的同类项合并成一项,即把它们的系数相加作为新的系数,而字母部分不变,叫做合并同类项。

    几个整式相加减,通常用括号把每一个整式括起来,再用加减号连接;然后去括号,合并同类项。

    同底数幂相乘,底数不变,指数相加。

    幂的乘方,底数不变,指数相乘

    积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘。

    单项式与单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。

    单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加。

    多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。

    (x+p)(x+q)=x^2+(p+q)x+pq

    平方差公式:(a+b)(a-b)=a^2-b^2

    完全平方公式:(a+b)^2=a^2+2ab+b^2 (a-b)^2=a^2-2ab+b^2

    (a+b+c)^2=a^2+2a(b+c)+(b+c)^2

    同底数幂相除,底数不变,指数相减。

    任何不等于0的数的0次幂都等于1。

    第十六章 分式

    如果A、B表示两个整式,并且B中含有字母,那么式子A/B叫做分式(fraction)。

    分式的分子与分母同乘或除以一个不等于0的整式,分式的值不变。

    分式乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为分母。

    分式除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。

    分式乘方要把分子、分母分别乘方。

    a^-n=1/a^n (a≠0) 这就是说,a^-n (a≠0)是a^n的倒数。

    分式方程检验方法:将整式方程的解带入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解;否则,这个解不是原分式方程的解。

    第十七章 反比例函数

    形如y=k/x(k为常数,k≠0)的函数称为反比例函数(inverse proportional function)。

    反比例函数的图像属于双曲线(hyperbola)。

    当k>0时,双曲线的两支分别位于第一、第三象限,在每个象限内y值随x值的增大而减小;

    当k<0时,双曲线的两支分别位于第二、第四象限,在每个象限内y值随x值的增大而增大。

    第十八章 勾股定理

    勾股定理:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a^2+b^2=c^2

    勾股定理逆定理:如果三角形三边长a,b,c满足a^2+b^2=c^2,那么这个三角形是直角三角形。

    经过证明被确认正确的命题叫做定理(theorem)。

    我们把题设、结论正好相反的两个命题叫做互逆命题。如果把其中一个叫做原命题,那么另一个叫做它的逆命题。(例:勾股定理与勾股定理逆定理)

    第十九章 四边形

    有两组对边分别平行的四边形叫做平行四边形。

    平行四边形的性质:平行四边形的对边相等;平行四边形的对角相等。平行四边形的对角线互相平分。

    平行四边形的判定:

    1.两组对边分别相等的四边形是平行四边形;

    2.对角线互相平分的四边形是平行四边形;

    3.两组对角分别相等的四边形是平行四边形;

    4.一组对边平行且相等的四边形是平行四边形。

    三角形的中位线平行于三角形的第三边,且等于第三边的一半。

    直角三角形斜边上的中线等于斜边的一半。

    矩形的性质:矩形的四个角都是直角;矩形的对角线平分且相等。

    矩形判定定理:

    1.有一个角是直角的平行四边形叫做矩形。

    2.对角线相等的平行四边形是矩形。

    3.有三个角是直角的四边形是矩形。

    菱形的性质:菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角。

    菱形的判定定理:

    1.一组邻边相等的平行四边形是菱形(rhombus)。

    2.对角线互相垂直的平行四边形是菱形。

    3.四条边相等的四边形是菱形。

    S菱形=1/2×ab(a、b为两条对角线)

    正方形的性质:四条边都相等,四个角都是直角。

    正方形既是矩形,又是菱形。

    正方形判定定理:

    1.邻边相等的矩形是正方形。

    2.有一个角是直角的菱形是正方形。

    一组对边平行,另一组对边不平行的四边形叫做梯形(trapezium)。

    等腰梯形的性质:等腰梯形同一底边上的两个角相等;等腰梯形的两条对角线相等。

    等腰梯形判定定理:同一底上两个角相等的梯形是等腰梯形。

    线段的重心就是线段的中点。

    平行四边形的重心是它的两条对角线的交点。

    三角形的三条中线交于疑点,这一点就是三角形的重心。

    宽和长的比是(根号5-1)/2(约为0.618)的矩形叫做黄金矩形。

    第二十章 数据的分析

    将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数(median);如果数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数。

    一组数据中出现次数最多的数据就是这组数据的众数(mode)。

    一组数据中的数据与最小数据的差叫做这组数据的极差(range)。

    方差越大,数据的波动越大;方差越小,数据的波动越小,就越稳定。

    数据的收集与整理的步骤:1.收集数据 2.整理数据 3.描述数据 4.分析数据 5.撰写调查报告

    初二数学知识点归纳上册人教版相关文章:

    ★人教版八年级数学上册知识点总结

    ★初二数学上册知识点总结

    ★初二数学上册知识点总结归纳

    ★数学八年级上册知识人教版

    ★八年级数学上册知识点归纳

    ★初二数学上册知识点总结2020

    ★八年级上册数学的知识点归纳

    ★人教版八年级上册数学教材分析

    ★初二上册数学知识点总结与学习方法

    ★八年级上册数学知识点总结

    零五网初二数学补充上册

    http://www.05wang.com/thread-94880-1-1.html

    希望能搜或圆世塌帮助你团迟。

    零五网八年级数学课课练

    第1章 二次根式二次根式属于“数与代数”领域的内容,它是在学生学习了平方根、立方根等内容的基础上进行的,是对七年级上册“实数”“代数式”等内容的延伸和补充。二次根式的运算以整式的运算为基础,在进行二次根式的有关运算时,所使用的运算法则与整式、分式的相关法则类似;在进行二次根式的加减时,所采用的方法与合并同类项类似;在进行二次根式的乘除时,所使用的法则和公式与整式的乘法运算法则及乘法公式类似。这些都说明了前后知识之间的内在联系。本章的主要内容有二次根式,二次根式的性质,二次根式的运算(根号内不含字母、不含分母有理化)。 一、教科书内容和教学目标本章的教学要求。 (1)了解二次根式的概念,了解简单二次根式的字母取值范围; (2)了解二次根式的性质; (3)了解二次根式的加、减、乘、除的运算法则; (4)会用二次根式的性质和运算法则进行有关实数的简单四则运算(不要求分母有理化)。本章教材分析。 课本在回顾算术平方根的基础上,通过“合作学习”的三个问题引出二次根式的概念,并说明以前学的数的算术平方根也叫做二次根式。在例题和练习的安排上,着重体现三个方面的要求:一是求二次根式中字母的取值范围;二是求二次根式的值;三是用二次根式表示有关的问题。 对于二次根式的性质,课本利用第4页图1-2给出的。该图的含义是如果正方形的面积为,那么这个正方形的边长就是;反之,如果正方形的边长为,那么这个正兄闭方形的面积就是,因此就有。从而得出二次根式的第一个性质。至于第二个性质,可以通过学生的计算来发现,所以课本安排了一个“合作学习”,让学生自己去发现和归纳。该节第一课时的重点在于对这两个性质的理解和运用,例题和练习的设计就围绕这两个性质展开。第二课时是学习二次根式的另外两个性质,课本安排两组练习,意在让学生通过自己的尝试,与同学的合作交流来发现这两个性质。通行基过两个例题和一组练习,使学生知道运用二次根式的性质,可以简化实数的运算,也可以对结果是二次根式的式子进行化简。课本第9页的“探究活动”既是对二次根式的运用,更在于培养学生的一种探究能力,观察、发现、归纳等能力。 第1.3节二次根式的运算,包含了二次根式的加、减、乘、除四种运算以及简单应用,课本安排了3个课时,逐步推进,逐渐综合。第一课时侧重于两个(相当于两个单项式)二次根式的乘除,其法则是从二次根式的性质得到的,比较自然。例1是对两个运算法则的直接运用,让学生有一个对法则的熟悉和熟练过程;例2是一个结合实际问题的运用,其中有勾股定理和三角形的面积计算。第二课时是二次根式的加减和乘除混合运算,出现了类似单项式乘以多项式、多项式乘以多项式(包括乘法公式、乘方)、多项式除以单项式的运算。课本中没有出现“同类二次根式”的概念,只是提到“类似于合并同类项”“相同二次根式的项”,这种类比的方法,学生是能够理解的,也能够与整式一样进行运算。第三课时是二次根式运算的应用。例6的数字看上去比较复杂,其目的是为了二次根式的运算的应用;例7综合运用了直角三角形的有关知识、图形的分割、面积的计算等,其解答过程较长,也是对二次根式知识的综合运用。 二、本章编写特点注重学生的观察、分析、归纳、探究等能力的培养。 在本章知识的呈现方式上档尘谨,课本比较突出地体现了“问题情境——数学活动——概括——巩固、应用和拓展”的叙述模式,这种意图大多通过“合作学习” 来完成。“合作学习”为学生创设了从事观察、猜测、验证交流等数学活动的机会。如第5页先让学生计算三组与的具体数值,再议一议与的关系,然后得出二次根式的性质“=”。二次根式的其他几个性质,课本中也是采用类似的方法。在学习了二次根式的有关性质后,课本又设计了一个“探究活动”,通过化简有关的二次根式,让学生自己去发现规律、表示规律、验证规律,并与同伴交流。所有这些都是教材编写的一种导向,以引起教与学方式上的一些的改变。注重数学知识与现实生活的联系。 教材力求克服传统观念上学习二次根式的枯燥性,避免大量纯式子的化简或计算,适当穿插实际应用或赋予式子一些实际意义。无论是学习二次根式的概念,还是学习二次根式的性质和运算,都尽可能把所学的知识与现实生活相联系,重视运用所学知识解决实际问题能力的培养。如二次根式概念的学习,课本通过三个实际问题来引入,其目的就是关注概念的实际背景与形成过程,克服机械记忆概念的学习方式。又如,课本第3页,用二次根式表示轮船航行的的距离,第11页求路标的面积,第21页花草的种植面积问题等。特别是在二次根式的运算中,专门安排了一节内容学习二次根式运算的应用,例6选取的背景是学生熟悉的滑梯,例7选取的背景是学生感兴趣的剪纸条,以及作业中的堤坝、快艇问题等等。充分利用图形,使代数与几何有机结合。 对于数与代数的内容,教材重视有关内容的几何背景,运用几何直观帮助学生理解、解决有关代数问题,是教材的一个编写特点,也是对教学的一种导向。本章中,如二次根式与直角三角形有关边的计算密切相关,课本在这方面选取了一定量的问题,既丰富了勾股定理的运用,又学习了二次根式的计算。又如二次根式的引入,课本以图形作为条件,让学生通过计算给出二次根式的概念;在学习二次根式的性质时,课本通过让学生读图1-2,从正反两方面来理解其含义,得出二次根式的性质。例题中结合图形示意,帮助学生理解问题,解决问题;作业或课本练习中设计一些图形中有关线段长度的计算;通过方格、直角坐标系来画三角形、确定点的位置等等。课本在安排二次根式的运算在日常生活和生产实际中的应用时,所选取的问题也在于体现学生所学知识之间的联系,感受所学知识的整体性,不断丰富学生解决问题的策略,提高解决问题的能力。 三、教学建议注意用好节前语。 本章的节前语不多,但都紧密结合本节学习的内容,提出一个具体的问题。教学中可以利用它们来创设问题情境,引入课题。如第1.1节“排球网的高AD为2.43米,CB为米,你能用代数式表示AC的长吗?”短短的几句话,既是一个学生熟悉的问题情境,又是一个看似熟悉但又具有一定的挑战怀,与数学学习相联系的问题,教师可以由此提出一个与本节课学习有关的问题。教学中不应忽视这种作用。注意把握教学难度。 与以往的教材相比,二次根式已降低了要求。如运用二次根式的性质将二次根式化简,只要求简单的,不要出现过于复杂的式子,并且明确根号内不含字母。对二次根式的四则运算,也仅局限于简单的,根号内不含字母,教学中不需补充超出课本题目要求的问题。当然对不同层次的学生,应该体现一定的弹性。课本第15页的作业题中的第7,8题,还可以借助于计算器进行计算。充分运用类比的方法。二次根式的运算以整式的运算为基础,其法则、公式都与整式的类似,特别是二次根式的加减,课本没有提出同类二次根式的概念,完全参照合并同类项的方法;二次根式的乘除、乘方运算类似于整式的乘除、乘方运算。因此对于二次根式的四则运算的教学应充分运用类比的方法,让学生理解其算理和算法,提高运算能力。第2章 一元二次方程一、教科书内容和课程学习目标(一)教科书内容 本章包括三节:2.1 一元二次方程;2.2一元二次方程的解法;2.3一元二次方程的应用。其中2.1节是全章的基础部分,2.2节是全章的重点内容,2.3节是知识应用和引申的内容。另外,阅读材料介绍了一元二次方程的发展,让学生了解数学的发展史。(二)本章的知识结构(三)课程目标(1)了解一元二次方程的概念,会用直接开平方法解形如(b≥0)的方程;(2)理解配方法,会用配方法解数字系数的一元二次方程;掌握一元二次方程求根公式的推导,会用求根公式解一元二次方程;会用因式分解法解一元二次方程,使学生能够根据方程的特征,灵活运用一元二次方程的各种解法求方程的根。(3)体验用观察法、画图或计算器等手段估计方程的解的过程。(4)能够根据具体问题中的数量关系,能够列出一元二程方程解应用题,能够发现、提出日常生活、生产或其他学科中可利用一元二次方程来解决的实际问题,并正确地用语言表达问题及解决过程。体会方程是刻画现实世界的一个有效的数学模型。(5)结合教学内容进一步培养学生逻辑思维能力,对学生进行辩证唯物主义观点的教育,通过一元二次方程的教学,使学生进一步获得对事物可以转化的认识。(四)课时安排2.1 一元二次方程…………………………………………………………2课时 其中:一元二次方程的概念……………………1课时 因式分解法解一元二次方程……………1课时2.2一元二次方程的解法………………………………………………4课时 其中:开方法、配方法………………………2课时 公式法…………………………………2课时2.3一元二次方程的应用………………………………………………2课时小结、目标与评定………………………………………………………2课时二、编写指导思想与特点方程教学在中学数学教学中占有很大的比例,一元二次方程在初中代数中占有重要地位。一方面,一元二次方程可以看成是前面所学过的有关知识的综合运用,如有理数、实数的概念和整式、分式、开平方等的运算,一元一次方程、一元一次方程组解法等知识,在本章都有应用。从数学角度看,这一章的学习有一定难度,如果前面某个环节薄弱或知识点有问题,就会给本章的学习带来困难,因此,这一章的教学是对以前所学的有关知识的检验,又是一次复习与巩固。当然,一元二次方程知识也是前面所学知识的继续和发展,尤其是方程方面知识的深入和发展。 本章的主要内容是一元二次方程的解法和应用,课本首先引入一元二次方程的概念,从实数的性质,将分解成为两个一次因式相乘积为零的一元二次方程转化为两个一元一次方程入手,介绍了利用因式分解法解一元二次方程的方法,体现了数学的转化思想。接着课本首先从数的开平方的知识出发,直接讲开平方法,然后依次介绍了配方法和公式法。在讲述公式法的同时,课本特别给出了利用计算器解一元二次方程的解法示例,以揭示技术发展给数学学习带来的影响,这也是一种新的尝试。同时,以建立数学模型为主要着力点介绍了一元二次方程的应用,并在例题的设置上充分考虑了图表、立体图形、物体运动和经济活动中的问题背景,力图使学生在现实的环境中学习数学。 这一章是全书乃至整个初中代数的一个重点内容。因为这一部分内容既是对以前所学内容的总结、巩固和提高,又是以后学习的知识基础。因此这一章可以说是起到了承上启下的作用。高中阶段的指数方程、对数方程及三角方程,无非就是指数、对数、三角函数的有关知识与一元一次方程、一元二次方程的综合而已。初中代数中的不少主要技能、解题方法以及一些常用的数学思想方法,在本章都有所体现。例如,换元法、因式分解法、配方法等。另外,从具体到抽象的概括能力、逻辑推理能力等等在本章也有体现。可以说,无论从基础知识还是基本技能看,这一章都占有重要的地位。在本章的内容中,应以一元二次方程的解法,特别是公式法作为重点。 三、教材体现的数学思想方法 本章从内容上看是初中代数的重点,从数学思想方法方面来看,也是初中数学中比较全面体现的一章。 1.方程的思想 方程本身就提供了一种重要的数学思想方法,这一点在一元二次方程中体现的更为充分。学习方程不仅为进一步学习其他知识打下基础,不仅可用于解决一些实际问题,而且在更广泛的意义上讲,通过方程可以沟通已知与未知之间的联系,从而由解方程就可以使问题得以解决,通常称之为方程思想。方程思想作为一种数学思想,在数学发展史上有重要作用,对求解数学问题来说也有重要的意义。 2.公式解法 一元二次方程的公式解法在数学思想方法上有重要意义。首先,公式法是人们所知的多次方程的第一种公式(根式)解,它为以后进行公式解的研究开辟了道路,并且是引起近似代数的起源问题之一,在数学的学习中也有重要意义;其次,公式法解体现了数学中的算子的思想,将数学问题进行抽象化、符号化、程序化,这是数学发展的重要的途径。 3.分类讨论的数学思想 一元二次方程求根公式中,涉及开方问题,即对要实施开平方,而前面已经学过负数没有平方根。因此的状态就决定了一元二次方程根的状态。必须对的符号进行讨论。分类讨论的数学思想是一种极为重要的数学思想方法,教材中对Δ=的三种分类讨论隐含在课堂教学之中,通过“想一想”让学生自然地得到结论,降低由于数学思想上的要求所带来的学习上的难度,这是一种合理的处理方法。实际上,判别式的讨论是不解方程而对方程的根进行定性研究的重要指标。在研究二次函数的图象和性质等方面有重要意义,在研究二次曲线的问题时有重要地位。判别式实质上是利用方程的系数研究方程的性质,是一种以局部研究探求具体性质的方法。找一种关键性的数量关系去定性地研究一类对象,也是一种常见的数学思想方法。 4.转化(化归)的数学思想 在本章中更突出地表示出“转化”的思想方法。如利用因式分解法解一元二次方程就是将一元二次方程转化为两个一元一次方程。严格地说,转化的思想是数学中认识和掌握新知识的重要途径,掌握这种方法,可以提高学生的数学能力,拓展学生数学知识。如换元法就是一种很重要的转化思想,这在本章也有不少的体现。 四、教材处理关于教材处理,按教材内容的安排及课程标准的要求,分三部分进行分析: 1.一元二次方程 本节包括一元二次方程的概念、因式分解法解一元二次方程,这一单元是本章的基础,教材两个问题中引入了一元二次方程的概念,一个问题是学生所熟悉的正方形和长方形的面积,另一个问题是从报纸上公布的统计数据,教学的重点是对方程的一般形式的认识和对方程解的理解,在此基础上,引入用因式分解法求一元二次方程解的方法,将这种解安排在此处,其目的是为了加强学生对学习方程目的的理解,并为后续通过转化求方程解奠定思想基础。 2.一元二次方程的解法 本节是本章的核心内容,主要是一元二次方程的各种解法。其中的一元二次方程的配方法和应用一元二次方程知识理解应用问题是重点,而这两个重点又是教学过程中的难点。一元二次方程的解法,尤其是公式法是学好本章的关键。因此,本节又是全章的重点,是学好本章的基础。 一元二次方程的解法,课本介绍了四种,即直接开平方法、配方法、公式法及因式分解法。 直接开平方法适用于(b≥0)模式的方程。实际上,给出的一般方程只要存在实根,就可以用配方法转化为的形式。例如,课本中将方程转化为,因此配方法是直接开方法的延伸,而直接开平方法是配方法的基础。 在配方法解一元二次方程的基础上,很自然地推出一元二次方程的求根公式,实际上就是对一般形式(a≠0)的一元二次方程实施配方法的结果。 对于三种解法,公式法可以是一种“万能”方法,只要△=≥0,将系数a,b,c代入公式即可求解。在教学中注意一元二次方程中的a≠0的条件。在配方时应强调方程两边同时加上“一次项系数之半的平方”或在左端加上“一次项系数之半的平方”再减去“一次项系数之半的平方”,实质上是方程的一种同解变形,这是必须反复训练方可达到学生熟练进行配方的目的,它也是推导求根公式的基础。 对△=的讨论,首先要渗透分类讨论的思想,另外,对△==0的情况,一定要强调有两个相等的实根:这与方程根的理论一致,学生开始会认识只有一根,要反复强调,以纠正这种不正确的或说是不严密的结论。对△=<0的情况,不能说成方程无解,而应强调方程无实数根或在实数范围内无解,强调数域是为今后在高中讨论有复根的情况埋下伏笔。理论上的证明见教师用书。 关于一元二次方程根与系数的关系,实际上,求根公式就体现了根与系数的关系,由于课程标准中没有涉及,但这部分内容对于今后的学习是很重要的,在教学中可以作为探索性学习的内容,让学生自己进行探索并得出结论。 3.一元二次方程的应用 列方程解应用问题,前面一元一次方程的应用已学习过相关的知识,但是列一元二次方程解应用题仍然是难点,其原因是数量关系比较复杂且隐蔽;应用题所反映的实际背景比较复杂而学生又不太熟悉;所列方程也逐步复杂。主观上学生一开始受算术解法思维的定势影响,缺乏广泛的社会经济生产和生活以及相关学科方面的知识,理解文字语言和数学语言等方面的能力较差。 对于求解应用题,若从思想方法角度来看,列方程解应用题属于数学模型法,其中方程应用题求解,大体上都是这样六个步骤:①审题,理解题意,明确题中涉及几个量,有几个是已知量,有几个是未知量,它们之间有什么关系等等;②设元,根据题目要求,选择合适的未知数,又分为直接设元法、间接设元法。同时还要考虑设几个未知数为宜;③列式,分析题目中量与量的关系,关键是找出题目中的相等关系,这时,要注意挖掘题目中的那些隐蔽的相等关系,有时,又要辅之使用图示法、列表法等一些直观手段;④求解;⑤检验,既要检验得到的解是否符合原方程或原方程组,又要检验所得的解对实际问题是否有意义;⑥作答,写出正确合理的答案。在教学中可以结合问题解决的策略,让学生主动参与,自主建构和合作学习,体会数学建模的基本思想与方法。(金克勤)第3章 频数及其分布统计学是搜集数据、分析数据,并根据它获得总体信息的科学.本套教材在七年级上册安排了 “数据与图表”,着重介绍了数据的收集、整理的初步方法;在八年级上册安排了“样本与数据分析初步”,通过对数据集中程度和离散程度的统计量的计算,初步了解了如何对数据的基本状态进行分析.为了进一步分析、处理数据,供决策时参考,有时我们还要了解数据的分布情况,找出新的特征数.“频数及其分布”这一章就是解决了这一问题.“频数及其分布”这部分内容在原总指浙江版义务教材中也有,但只是作为概率统计初步中的一小节.考虑到频数、频率、频数直方图、频数折线图与日常生活、自然、社会和科学技术领域的密切联系,《数学课程标准》增加了这块内容的份量.本套教材将这块内容独立设章的目的,一方面可用足够的篇幅来更清楚、更详细阐述,也是为每册循序渐进地学习概率与统计知识所作的精心安排. 本章教学时间约需7课时 ,具体安排如下: 3.1 频数和频率 1课时 3.2 频数分布 1课时 3.3 频数的应用 3课时 复习、评估1课时,机动使用1课时,合计7课时. 一、教科书内容和课程教学目标 (1)本章知识结构框图如下:(2)本章教学目标如下:目标类别 目标层次知识点及相关技能 知识技能目标 过程性目标了解 理解 掌握 灵活运用 经历(感受) 体验(体会) 探索 频数及其分布 极差 √ √频数的概念 √ √频数分布表 √ √频率的概念 √ √频数分布的意义和作用 √ √频数分布直方图 √ √频数分布折线图 √ √根据频数分布直方图估计平均数 √ √(3)本章教学要求 ① 通过实例,理解频数、频率的概念,了解频数分布的意义和作用. ② 会计算极差,会对数据合理分组,并求出每一组的频数、频率,列出频数分布表. ③ 会画频数分布直方图和频数分布折线图,能根据频数分布直方图估计平均数,能根据数据处理的结果,作出合理的判断和预测,并在这一过程中体会统计对决策的作用. ④ 通过画直方图、折线图养成学生耐心细致的工作作风,实事求是的工作态度,善于观察、分析问题的能力. 二、本章编写特点以《数学课程标准》为本,删繁就简、突出重要内容 画频数分布直方图不采用传统按部就班的逐步介绍的方法,步骤多、方法繁将会影响这个年龄段的学生学习兴趣.事实上,如3.1节做一做,“下面给出以0.4 kg为组距,取2.75~3.15、3.15~3.55……为端点”;对连续型、离散型数据的不同处理等,里面还有许多道理.不在繁琐的具体枝节上纠缠,突出重要概念,让学生体验频数、频率的真实含义,理解频数、频率分布的意义和作用才是教学的真正目的,也是本章教材编写的特点之一.精心选择实例,贴近学生生活,引起学生兴趣频数、频率本身就是处理实际问题,从实际中来,在解决实际问题的过程中引入概念.教材精心挑选、引入大量学生熟悉的例子,创设学生熟悉的情境,引起学生兴趣,使学生能产生解决它的欲望.扫除一定程度上因为叙述事例的冗长而引起学生反感.如血型分布、运动鞋鞋号的选择、学科成绩、午餐等候时间、矿泉水质量等等都是学生身边的事,学生熟悉且亲切.同时也培养了学生从统计的角度思考与数据信息有关的问题,通过收集、分析数据的过程能初步作出合理的决策,提高学生处理问题、决策问题的能力.重实践操作,设计一定量的数学活动,在交流中增强数学应用意识本章内容安排了一定量的实习操作性的活动,如“八年级男生、女生身高和所穿运动鞋的分布”“八年级学生跳绳次数的频数分布”“八年级男生、女生体重数据的分布”“商场不同价格的彩电销售情况”等,这些活动都需要学生分小组合作,事前精心设计策划,调查广泛接触不太熟悉的人和事,希望学生通过这些活动认识现实世界中蕴含的大量的数学信息,数学与现实世界有着紧密联系,增强学生的数学应用意识,也培养学生实际工作能力,从中获得克服困难经历或者体会获得成功的喜悦. 三、教学建议 (1) 画频数分布直方图的一般步骤是:①计算极差;②决定组数与组距.一般当数据在100个以内时,按照数据多少,常分为5~12组;组距是指每个小组的两个端点之间的“距离” , = 组距;③决定分点,为了避免有些数据本身落在分点上,常常将分点多取一位小数;④列表、划记;⑤画频数分布直方图.教师根据实际情况在讲解中灵活应用,但不要完全在黑板上重复以上步骤,这样违背了教材编写的初衷. (2) 利用频数分布表、频数直方图、频数折线图来分析数据的一些特征是教学的重点之一,教学中应该充分发挥学生的积极性,让学生仔细地观察、大胆地推测、合理地验证.“统一订购运动服、运动鞋,应注意哪些问题?”“校方安排学生多长的午餐时间为宜?”“估计鱼塘中有多少条鱼”“分析男生、女生游泳项目成绩差异”等等,不像原来数学题有唯一标准答案,应鼓励学生各抒已见,最后在充分讨论的基础上形成比较一致的意见.这是与人交流、勇于探索、比较清晰表达自己观点的重要方式,也是新课程数学教学的一个重要方面,教师可视具体情况在本章教学中尽量体现. (3)计算繁琐,联系实际紧密是本章的主要特点.除了课本提供的范例外,教学中教师可根据实际情况进行适当补充.同时教师还应该充分利用多媒体预先制作好一些教具,不要使课堂上宝贵的时间浪费在抄写、绘图上面. 四、本章教学中应注意的问题 (1)数据有“连续型”与“离散型”两种,对离散型数据,如课本第51页的血型分组一般比较容易,对离散型数据分组不唯一,仅是根据经验,不同的分组一般得到的结论也有所差别,但只要合理均认为正确. (2)进行实践活动时,要注意有些问题可能涉及学生的个人隐私,如较胖的女同学不愿意论及自己的体重,她认为公开自己的体重是侵犯了个人隐私权;一分钟跳绳次数比较少的同学也可能觉得没面子而出现一些不愉快事情.针对这些情况任课教师应有充分的思想准备,采取回避或选择一些合适的同学或选择另外适当的数据作调查对象等办法.我们的目的是通过一些实践活动在交流中培养互相合作的精神,与人合作中体会愉快,用数学知识解决实际问题中,增强应用数学的自信心.不要因为个别特殊原因干扰整个教学计划. (3)直方图的纵坐标与横坐标一般来说有不同的单位,每个单位的具体长度应在比较中进行选择.最终的要求是画出来的图形比较美观,能清楚反映分布情况、及变化趋势.课本所采用画折线 的办法就是避免图形画在极端的位置.在不影响整个图形所反映基本特征的情况下,使频数直方图或频数折线图更加美观.也可以采用将学生所画的图比较展览的办法,让学生在交流中取长补短,互相吸收别人好的经验,来完善自己画图技能.

    六年级数学课课练上册零五网

    苏教版五年级上语文补充习题答案

    (2014.9校对完成)苏教版五年级下语文补充习题答案

    师恩难忘补充习题答案

    陶校长的演讲补充习题答案

    3古诗两首补充习题答案

    去打开大自然绿色的课本补充习题答案

    装满昆虫的衣袋补充习题答案

    变色龙补充习题答案

    金蝉脱壳补充习题答案

    8.成语故事补充习题答案

    推敲补充习题答案

    嫦娥奔月补充习题答案

    读书莫放拦路虎补凯盯充习题答案

    伊索寓言补充习题答案

    在大海中永生补充习题答案

    高尔基和他的儿子补充习题答案

    艾滋病小斗士补充习题答案

    黄山奇松补充习题答案

    黄果树盯答和瀑布补充习题答案

    莫高窟补充习题答案

    天火之谜补充习题答案

    厄运打不垮的信念补充习题答案

    诺贝尔补充习题答案

    滴水穿石的启示补充习题答案

    林冲棒打洪教头补充习题答案

    少年王冕补充习题答案

    黄鹤楼送别补充习题答案

    清平乐 村居补充习题答案

    期末综合测试补充习题答案

    春光染绿我们双脚补充习题答案

    暖流补充习题答案

    只拣儿童多处行补充习题答案

    早补充习题答案

    5.古诗两首补充习题答案

    梦圆飞天补充习题答案

    火星——地球的“举陵孪生兄弟”补充习题答案

    神奇的克隆补充习题答案

    海伦凯勒补充习题答案

    二泉映月补充习题答案

    郑和远航补充习题答案

    司马迁发愤写《史记》补充习题答案

    精读与略读补充习题答案

    秦兵马俑补充习题答案

    埃及的金字塔补充习题答案

    音乐之都维也纳补充习题答案

    爱如茉莉补充习题答案

    月光启蒙补充习题答案

    我和祖父的园子补充习题答案

    谈礼貌补充习题答案

    七律 长征补充习题答案

    彭德怀和他的大黑骡子补充习题答案

    大江保卫战补充习题答案

    24.古诗两首补充习题答案

    望月补充习题答案

    灰椋鸟补充习题答案

    水补充习题答案

    期末综合测试补充习题答案

    猜你喜欢