当前位置: 首页 > 所有学科 > 数学

高中数学笔记整理,高中数学学霸笔记纯手写

  • 数学
  • 2023-06-08
目录
  • 高中数学题型笔记
  • 高中知识点总结数学
  • 高二数学学霸笔记整理
  • 高中数学学霸笔记纯手写
  • 高中数学指数公式大全

  • 高中数学题型笔记

    高中一年级的新同学们,当你们踏进高中校门,漫步在优美的校园时,看见老师严谨而热心的教学和师兄、师姐深切的关怀时,我想你们会暗暗决心:争取学好高中阶段的各门学科。在新的高考制度"3+综合"普遍吹散全国大地之时,代表人们基本素质的"3"科中,数学是最能体现一个人的思维能力,判断能力、反应敏捷能力和聪明程度的学科。数学直接影响着国民的基本素质和生活质量,良好的数学修养将为人的一生可持续发展奠定基础,高中阶段则应可能充分反映学习者对数学的不同需求,使每个学生都能学习适合他们自己的数学。

    一、高中数学课的设置

    高中数学内容丰富,知识面广泛,高一年级上学期学习第一册(上):第一章集合与简易逻辑;第二章函数;第三章数列。高一年级下学期学习第一册(下):第四章三角函数;第五章平面向量。高二年级上学期学习第二册(上):第六章不等式;第七章直线和圆的方程;第八章圆锥曲线方程。高二年级下学期学习第二册(下):第九章直线、平面、简单几何体;第十章排列、组合和概率。高二结束将有数学"会考"。高三年级文科生学习第三册(选修1):第一章统计;第二章极限与导数。高三年级理科生学习第三册(选修2):第一章概率与统计;第二章极限;第三章导数;第四章复数。高三还将进行全面复习,并有重要的"高考"。

    二、初中数学与高中数学的差异。

    1、知识差异。初中数学知识少、浅、难度容易、知识面笮。高中数学知识广泛,将对初中的数学知识推广和引伸,也是对初中数学知识的完善。如:初中学习的角的概念只是"0-1800"范围内的,但实际当中也有7200和"-300"等角,为此,高中将把角的概念推广到任意角,可表示包括正、负在内的所有大小角。又如:高中要学习《立体几何》(第九章直线、平面、简单几何体),将在三维空间中求角和距离等。

    还将学习"排列组合"知识,以便解决排队方法种数等问题。如:①三个人排成一行,有几种排队方法,(=6种);②四人进行乒乓球双打比赛,有几种比赛场次?(答:=3种)高中将学习统计这些排列的数学方法。初中中对一个负数开平方无意义,但在高中规定了i2=--1,就使-1的平方根为物枯握±i.即可把数的概念进行推广,使数的概念扩大到复数范围等。这些知识同学们在以后的学习中将逐渐学习到。

    2、学习方法的差异。

    (1)初中课堂教学量小、知识简单,通过教师课堂教慢的速度,争取让全面同学理解知识点和解题方法,课后老师布置作业,然后通过大量的课堂内、外练习、课外指导达到对知识的反反复复理解,直到学生掌握。而高中数学的学习随着课程开设多(有九们课学生败洞同时学习),每天至少上六节课,自习时间三节课,这样各科学习时间将大大减少,而教师布置课外题量相对初中减少,这样集中数学学习的时间相对比初中少,数学教师将相初中那样监督每个学生的作业和课外练习,就能达到相初中那样把知识让每个学生掌握后再进行新课。

    (2)模仿与创新的区别。

    初中学生模仿做题,他们模仿老师思维推理教多,而高中模仿做题、思维学生有,但随着知识的难度大和知识面广泛,学生不能全部模仿,即就是学生全部模仿训练做题,也不能开拓学生自我思维能力,学生的数学成绩也只能是一般程度。现在高考数学考察,旨在考察学生能力,避免学生高分低能,避免定势思维,提倡创新思维和培养学生的创造能力培养。初中学生大量地模仿使学生带来了不利的思维定势,对高中学生带来了保守的、僵化的思想,封闭了学生的丰富反对创造精神。如学生在解决:比较a与2a的大小时要不就错、要不就答不全面。大多数学生不会分类讨论。

    3、学生自学能力的差异

    初中学生自学那能力低,大凡考试中所用的解题方法和数学思想,在初中教师基本上已反复训练,老师把学生要学生自己高度深刻理解的问题,都集中表现在他的耐心的讲解和大量的训练中,而且学生的听课只需要熟记结论就可以做题(不全是),学生不需自学。但高中的知识面广,知识要全部要教师训练完高考中的习题类型是不可能的,只有通过较少的、较典型的一两道例题讲罩庆解去融会贯通这一类型习题,如果不自学、不靠大量的阅读理解,将会使学生失去一类型习题的解法。另外,科学在不断的发展,考试在不断的改革,高考也随着全面的改革不断的深入,数学题型的开发在不断的多样化,近年来提出了应用型题、探索型题和开放型题,只有靠学生的自学去深刻理解和创新才能适应现代科学的发展。

    其实,自学能力的提高也是一个人生活的需要,他从一个方面也代表了一个人的素养,人的一生只有18---24年时间是有导师的学习,其后半生,最精彩的人生是人在一生学习,靠的自学最终达到了自强。

    4、思维习惯上的差异

    初中学生由于学习数学知识的范围小,知识层次低,知识面笮,对实际问题的思维受到了局限,就几几何来说,我们都接触的是现实生活中三维空间,但初中只学了平面几何,那么就不能对三维空间进行严格的逻辑思维和判断。代数中数的范围只限定在实数中思维,就不能深刻的解决方程根的类型等。高中数学知识的多元化和广泛性,将会使学生全面、细致、深刻、严密的分析和解决问题。也将培养学生高素质思维。提高学生的思维递进性。

    5、定量与变量的差异

    初中数学中,题目、已知和结论用常数给出的较多,一般地,答案是常数和定量。学生在分析问题时,大多是按定量来分析问题,这样的思维和问题的解决过程,只能片面地、局限地解决问题,在高中数学学习中我们将会大量地、广泛地应用代数的可变性去探索问题的普遍性和特殊性。如:求解一元二次方程时我们采用对方程ax2+bx+c=0(a≠0)的求解,讨论它是否有根和有根时的所有根的情形,使学生很快的掌握了对所有一元二次方程的解法。另外,在高中学习中我们还会通过对变量的分析,探索出分析、解决问题的思路和解题所用的数学思想。

    三、如何学好高中数学

    良好的开端是成功的一半,高中数学课即将开始与初中知识有联系,但比初中数学知识。高一数学中我们将学习函数,函数是高中数学的重点,它在高中数学中是起着提纲的作用,它融汇在整个高中数学知识中,其中有数学中重要的数学思想方法;如:函数与方程思想、数形结合思想等,它也是高考的重点,近年来,高考压轴题都以函数题为考察方法的。高考题中与函数思想方法有关的习题占整个试题的60%以上。

    1、有良好的学习兴趣

    两千多年前孔子说过:"知之者不如好之者,好之者不如乐之者。"意思说,干一件事,知道它,了解它不如爱好它,爱好它不如乐在其中。"好"和"乐"就是愿意学,喜欢学,这就是兴趣。兴趣是最好的老师,有兴趣才能产生爱好,爱好它就要去实践它,达到乐在其中,有兴趣才会形成学习的主动性和积极性。在数学学习中,我们把这种从自发的感性的乐趣出发上升为自觉的理性的"认识"过程,这自然会变为立志学好数学,成为数学学习的成功者。那么如何才能建立好的学习数学兴趣呢?

    (1)课前预习,对所学知识产生疑问,产生好奇心。

    (2)听课中要配合老师讲课,满足感官的兴奋性。听课中重点解决预习中疑问,把老师课堂的提问、停顿、教具和模型的演示都视为欣赏音乐,及时回答老师课堂提问,培养思考与老师同步性,提高精神,把老师对你的提问的评价,变为鞭策学习的动力。

    (3)思考问题注意归纳,挖掘你学习的潜力。

    (4)听课中注意老师讲解时的数学思想,多问为什么要这样思考,这样的方法怎样是产生的?

    (5)把概念回归自然。所有学科都是从实际问题中产生归纳的,数学概念也回归于现实生活,如角的概念、至交坐标系的产生、极坐标系的产生都是从实际生活中抽象出来的。只有回归现实才能使对概念的理解切实可靠,在应用概念判断、推理时会准确。

    2、建立良好的学习数学习惯。

    习惯是经过重复练习而巩固下来的稳重持久的条件反射和自然需要。建立良好的学习数学习惯,会使自己学习感到有序而轻松。高中数学的良好习惯应是:多质疑、勤思考、好动手、重归纳、注意应用。学生在学习数学的过程中,要把教师所传授的知识翻译成为自己的特殊语言,并永久记忆在自己的脑海中。另外还要保证每天有一定的自学时间,以便加宽知识面和培养自己再学习能力。

    3、有意识培养自己的各方面能力

    数学能力包括:逻辑推理能力、抽象思维能力、计算能力、空间想象能力和分析解决问题能力共五大能力。这些能力是在不同的数学学习环境中得到培养的。在平时学习中要注意开发不同的学习场所,参与一切有益的学习实践活动,如数学第二课堂、数学竞赛、智力竞赛等活动。

    平时注意观察,比如,空间想象能力是通过实例净化思维,把空间中的实体高度抽象在大脑中,并在大脑中进行分析推理。其它能力的培养都必须学习、理解、训练、应用中得到发展。特别是,教师为了培养这些能力,会精心设计"智力课"和"智力问题"比如对习题的解答时的一题多解、举一反三的训练归类,应用模型、电脑等多媒体教学等,都是为数学能力的培养开设的好课型,在这些课型中,学生务必要用全身心投入、全方位智力参与,最终达到自己各方面能力的全面发展。

    四、其它注意事项

    1、注意化归转化思想学习。

    人们学习过程就是用掌握的知识去理解、解决未知知识。数学学习过程都是用旧知识引出和解决新问题,当新的知识掌握后再利用它去解决更新知识。初中知识是基础,如果能把新知识用旧知识解答,你就有了化归转化思想了。可见,学习就是不断地化归转化,不断地继承和发展更新旧知识。

    2、学会数学教材的数学思想方法。

    数学教材是采用蕴含披露的方式将数学思想溶于数学知识体系中,因此,适时对数学思想作出归纳、概括是十分必要的。概括数学思想一般可分为两步进行:一是揭示数学思想内容规律,即将数学对象其具有的属性或关系抽取出来,二是明确数学思想方法知识的联系,抽取解决全体的框架。实施这两步的措施可在课堂的听讲和课外的自学中进行。

    课堂学习是数学学习的主战场。课堂中教师通过讲解、分解教材中的数学思想和进行数学技能地训练,使高中学生学习所得到丰富的数学知识,教师组织的科研活动,使教材中的数学概念、定理、原理得到最大程度的理解、挖掘。如初中学习的相反数概念教学中,教师的课堂教学往往有以下理解:①从定义角度求3、-5的相反数,相反数是的数是_____.②从数轴角度理解:什么样的两点表示数是互为相反数的。(关于原点对称的点)③从绝对值角度理解:绝对值_______的两个数是互为相反数的。④相加为零的两个数互为相反数吗?这些不同角度的教学会开阔学生思维,提高思维品质。望同学们把握好课堂这个学习的主战场。

    五、学数学的几个建议。

    1、记数学笔记,特别是对概念理解的不同侧面和数学规律,教师为备战高考而加的课外知识。

    2、建立数学纠错本。把平时容易出现错误的知识或推理记载下来,以防再犯。争取做到:找错、析错、改错、防错。达到:能从反面入手深入理解正确东西;能由果朔因把错误原因弄个水落石出、以便对症下药;解答问题完整、推理严密。

    3、记忆数学规律和数学小结论。

    4、与同学建立好关系,争做"小老师",形成数学学习"互助组"。

    5、争做数学课外题,加大自学力度。

    6、反复巩固,消灭前学后忘。

    7、学会总结归类。可:①从数学思想分类②从解题方法归类③从知识应用上分类

    同学们在高中有优美的学习环境,有一群乐于事业的热心教师,全体教师经验丰富,他们甘愿为你们做铺路石直至你们走进高等学校大门。我们数学组的全体教师一定会使你们成为数学学习的成功。

    高中知识点总结数学

    高一网权威发布高一如何做数学笔记,更多高一如何做数学笔记相关信息请访问高一网。

    【导语】高一数学是高考的基础,掌握数学知识点将对高考复习起到重要作用,为方便同学们复习高一数学知识点,大范文网整理了高一如何做数学笔记,供同学们参考学习。

    从初中升入高中,在数学学习上有一个飞跃。其表现在所学内容更多,难度更大,思维要求更高。因而学好高中数学,要求学生对数学问题的理解和处理要更具化、理性化和成熟化。

    学好高中数学,在学习方法上要有所转变和改进。而做好数学笔记无疑是非常有效的环节。善于做数学笔记,是一个学生善于学习的反映。那么,数学笔记究竟该记些什么呢?

    一记蔽灶祥内容提纲

    老师讲课大多有提纲,并且讲课时老师会将一堂课的线索脉络、重点难点等,简明清晰地呈现在黑板上,同时,教师会使之富有条理性和直观性。记下这些内容提纲,便于课后复习回顾,整体把握知识框架,对所学知识做到胸有成竹,清晰完整

    二记疑难问题

    将课堂上未听懂的问题及时记下来,便于课后请教同学或老师,把问题宏搏弄懂弄通。教师在组织课堂教学时,受到时空的限制,不可能做到顾及每一位同学。相应的,一些问题对部分学生来说,是属于疑难问题,由于课堂上来辩旁不及思考成熟,记下疑难问题,可在课后继续加以思考和探究,加以理解和掌握,不致出现知识的断层、方法的缺陷。

    三记思路方法

    对老师在课堂上介绍的解题方法和分析思路也应及时记下。课后加以消化,若有疑惑,先作独立分析,因为有可能是自己理解错误造成的,也有可能是老师讲课疏忽造成的,记下来后,便于课后及时与老师商榷和探讨。勤记老师讲的解题技巧、思路及方法,这对于启迪思维,开阔视野,开发智力,培养能力,并对提高解题水平大有益处,在这基础上,若能主动钻研,另辟蹊径,则更难能可贵。

    四记归纳总结

    注意记下老师的课后总结,这对于浓缩一堂课的内容,找出重点及各部分之间的联系,掌握基本概念、公式、定理,寻找规律,融会贯通课堂内容都很有作用。同时,很多有经验的老师在课后小结时,一方面是承上归纳所学内容,另一方面又是启下布置预习任务或点明后面所要学的内容,做好笔记可以把握学习的主动权,提前作准备,做到目标任务明确。

    五记体会感受

    数学学习是智、情、意、行的综合。数学学习过程伴随着积极的情感体验、意志体验过程。记下自己学习过程的感受,可以用来更好地调控自己的学习行为。譬如,一道运算很繁杂的习题,依靠坚强的意志获得解题成功后,可在旁边写上“功夫不负有心人”等自勉的语句,用来激励自己。

    六记错误反思

    学习过程中不可避免地会犯这样或那样的错误,“聪明人不犯或少犯相同的错误”,记下自己所犯的错误,并用红笔醒目地加以标注,以警示自己,同时也应注明错误成因,正确思路及方法,在反思中成熟,在反思中提高。

    俗话说“好记性不如烂笔头”。坚持做好数学笔记,对于学好数学将会大有裨益。

    高二数学学霸笔记整理

    【 #高一#导语】高中数学的理论性、抽象性强,就需要在对知识的理解上下功夫,要多思考,多研究。为各位同学整理了《高一数学重点知识归纳笔记》,希望对你的学习有所帮助!

    1.高一数学重点知识归纳笔记 篇一

    复数中的难点

    (1)复数的向量表示法的运算.对于复数的向量表示有些学生掌握得不好,对向量的运算的几何意义的灵活掌握有一定的困难.对此应认真体会复数向量运算的几何意义,对其灵活地加以证明.

    (2)复数三角形式的乘方和开方.有部分学生对运算法则知道,但对其灵活地运用有一定的困难,特别是开方运算,应对此认真地加以训练.

    (3)复数的辐角主值的求法.

    (4)利用复数的几何意义灵活地解决问题.复数可以用向量表示,同时复数的模和辐角都具有几何意义,对他们的理解和应用有一定难度,应认真加以体会.

    复数中的重点

    (1)理解好复数的概念,弄清实数、虚数、纯虚数的不同点.

    (2)熟练掌握复数三种表示法,以及它们间的互化,并能准确地求出复数的模和辐角.复数有代数,向量和三角三种表示法.特别是代数形式和三角形式的互化,以及求复数的模和辐角在解决具体问题时经常用到岁升,是一个重点内容.

    (3)复数的三种表示法的各种运算,在运算中重视共轭复数以及模的有关性质.复数的运算是复数中的主要内容,掌握复数各种形式的运算,特别是复数运算的几何意义更是重点内容.

    (4)复数集中一元二次方程和二项方程的解法.

    2.高一数学重点知识归纳笔记 篇二

    一)两角和差公式

    sin(A+B)=sinAcosB+cosAsinB

    sin(A-B)=sinAcosB-sinBcosA

    cos(A+B)=cosAcosB-sinAsinB

    cos(A-B)=cosAcosB+sinAsinB

    tan(A+B)=(tanA+tanB)/(1-tanAtanB)

    tan(A-B)=(tanA-tanB)/(1+tanAtanB)

    二)用以上公式可推出下列二倍角公式

    tan2A=2tanA/[1-(tanA)^2]

    cos2a=(cosa)^2-(sina)^2=2(cosa)^2-1=1-2(sina)^2

    sin2A=2sinA.cosA

    三)半角的只需记住这个:

    tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA)

    四)用二倍角中的余弦可推出降幂公式

    (sinA)^2=(1-cos2A)/2

    (cosA)^2=(1+cos2A)/2

    五)用以上降幂公式可推出以下常用的化简公式

    1-cosA=sin^(A/2).2

    1-sinA=cos^(A/2).2

    3.高一数学重点知识归纳笔记 篇三

    1.多面体的结构特征

    (1)棱柱有两个面相互平行,其余各面都是平行四边形,每相邻两个四边形的公共边平行。

    正棱柱:侧棱垂直于底面的棱柱叫做直棱柱,底面是正多边形的直棱柱叫做正棱柱.反之,正棱柱的底面是正多边形,侧棱垂直于底面,侧面是矩形。

    (2)棱锥的底面是任意多边形,侧面是有一个公共顶点的三角形。

    镇雀早正棱锥:底面是正多边形,顶点在底面的射影是底面正多边形的中心的棱锥叫做正棱锥.特别地,各棱均相等的正三棱锥叫正四面体.反过来,正棱锥的底面是正多边形,且顶点在底面的射影是底面正多边形的中心。

    (3)棱台可由平行于底面的平面截棱锥得到,其上下底面是相似多边形。

    2.旋转体的结构特征

    (1)圆柱可以由矩形绕一边所在直线旋转一周得到.

    (2)圆锥可以由直角三角形绕一条直角边所在直线旋转一周得到.

    (3)圆台可以由直角梯形绕直角腰所在直线旋转一周或等腰梯形绕上下底面中心所在直线旋转半周得到,也可由平行于底面的平面截圆锥得到。

    (4)球可以由半圆面绕直径旋转一周或圆面绕直径旋转半周得到。

    3.空间几何体的三视图

    空间几何体的三视图是用平行投影得到,这种投影御雀下,与投影面平行的平面图形留下的影子,与平面图形的形状和大小是全等和相等的,三视图包括正视图、侧视图、俯视图。

    三视图的长度特征:“长对正,宽相等,高平齐”,即正视图和侧视图一样高,正视图和俯视图一样长,侧视图和俯视图一样宽.若相邻两物体的表面相交,表面的交线是它们的分界线,在三视图中,要注意实、虚线的画法。

    4.空间几何体的直观图

    空间几何体的直观图常用斜二测画法来画,基本步骤是:

    (1)画几何体的底面

    在已知图形中取互相垂直的x轴、y轴,两轴相交于点O,画直观图时,把它们画成对应的x′轴、y′轴,两轴相交于点O′,且使∠x′O′y′=45°或135°,已知图形中平行于x轴、y轴的线段,在直观图中平行于x′轴、y′轴.已知图形中平行于x轴的线段,在直观图中长度不变,平行于y轴的线段,长度变为原来的一半。

    (2)画几何体的高

    在已知图形中过O点作z轴垂直于xOy平面,在直观图中对应的z′轴,也垂直于x′O′y′平面,已知图形中平行于z轴的线段,在直观图中仍平行于z′轴且长度不变。

    4.高一数学重点知识归纳笔记 篇四

    求函数定义域

    常见的用解析式表示的函数f(x)的定义域可以归纳如下:

    ①当f(x)为整式时,函数的定义域为R.

    ②当f(x)为分式时,函数的定义域为使分式分母不为零的实数集合。

    ③当f(x)为偶次根式时,函数的定义域是使被开方数不小于0的实数集合。

    ④当f(x)为对数式时,函数的定义域是使真数为正、底数为正且不为1的实数集合。

    ⑤如果f(x)是由几个部分的数学式子构成的,那么函数定义域是使各部分式子都有意义的实数集合,即求各部分有意义的实数集合的交集。

    ⑥复合函数的定义域是复合的各基本的函数定义域的交集。

    ⑦对于由实际问题的背景确定的函数,其定义域除上述外,还要受实际问题的制约。

    5.高一数学重点知识归纳笔记 篇五

    函数图象

    (1)定义:在平面直角坐标系中,以函数y=f(x),(x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数y=f(x),(x∈A)的图象.C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上.即记为C={P(x,y)|y=f(x),x∈A}图象C一般的是一条光滑的连续曲线(或直线),也可能是由与任意平行与Y轴的直线最多只有一个交点的若干条曲线或离散点组成。

    (2)画法

    A、描点法:根据函数解析式和定义域,求出x,y的一些对应值并列表,以(x,y)为坐标在坐标系内描出相应的点P(x,y),最后用平滑的曲线将这些点连接起来.

    B、图象变换法

    常用变换方法有三种,即平移变换、伸缩变换和对称变换

    (3)作用:

    直观的看出函数的性质;

    利用数形结合的方法分析解题的思路。提高解题的速度。

    6.高一数学重点知识归纳笔记 篇六

    集合的运算

    1.交集的定义:一般地,由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.记作A∩B(读作”A交B”),即A∩B={x|x∈A,且x∈B}.

    2.并集的定义:一般地,由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集。记作:A∪B(读作”A并B”),即A∪B={x|x∈A,或x∈B}.

    3.交集与并集的性质:A∩A=A,A∩φ=φ,A∩B=B∩A,A∪A=A,A∪φ=A,A∪B=B∪A.

    高中数学学霸笔记纯手写

    作为高考之中最重要、也最容易使各位同学产生畏难心理的学科--数学,曾是很多同学的滑铁卢。但其实作为面向全部高中生的高中数学,其内容并不艰深,学习数学也是有法可循的。我整理了高一数学学霸笔记,来看闭友一下!

    高一数学学霸笔记

    提高数学成绩的窍门

    学好数学第一要养成预习的习惯。这是我多年学习数学的一个好方法,因为提前把老师要讲的知识先学一遍,就知道自己哪里不会,学的时候就有重点。当然,如果完全自学就懂更好了。

    第二是书后做练习题。预习完不是目的,有时间可以把例题和课后练习题做了,检查预习情况,如果都会做让神说明学会了,即使不会还能再听老师讲一遍。

    第三个步骤是做老师布置的作业,认真做。做的时候可以把解题过程直接写在题目旁边,比如选择题和填空题,因为解答题有很多空白处可写。这样做的好处就是,老师讲题时能跟上思路,不容易走神。

    第四个学好数学的方法是整理错题。每次考试结束后,总会有很多错坦态亏题,对于这些题目,我们不要以为上课听懂了就会做了,看花容易绣花难,亲手做过了才知道会不会。而且要把错的题目对照书本去看,重新学习知识。

    第五个提高数学成绩的方法是查缺补漏。在做了大量习题以后,数学成绩有所提高,但还是存在一些不会做的题目,我们要善于发现哪些类型的题目还存在盲区,然后逐一击破。

    高中数学指数公式大全

    一、《集合与函数》

    内容子交并补集,还有幂指对函数。性质奇偶与增减,观察图象最明显。 复合函数式出现,性质乘法法则辨,若要详细证明它,还须将那定义抓。 指数与对数函数,两者互为反函数。底数非1的正数,1两边增减变故。 函数定义域好求。分母不能等于0,偶次方根须非负,零和负数无对数 正切函数角不直,余切函数角不平;其余函数实数集,多种情况求交集。 两个互为反函数,单调性质都相同;图象互为轴对称,Y=X是对称轴 求解非常有规律,反解换元定义域;反函数的定义域,原来函数的值域。 幂函数性质易记,指数化既约分数;函数性质看指数,奇母奇子奇函数, 奇母偶子偶函数,偶母非奇偶函数;图象第一象限内,函数增减看正负。

    二、《三角函数》

    三角函数是函数,象限符号坐标注。函数图象单位圆,周期奇偶增减现。 同角关系很重要,化简证明都需要。正六边形顶点处,从上到下弦切割 中心记上数字1,连结顶点三角形;向下三角平方和,倒数关系是对角, 顶点任意一函数,等于后面两根除。诱导公式就是好,负化正后大化小, 变成税角好查表,化简证明少不了。二的一半整数倍,奇数化余偶不变, 将其后者视锐角,符号原来函数判。两角和的余弦值,化为单角好求值, 余弦积减正弦积,换角变形众公式。和差化积须同名,互余角度变名称。 计算证明角先行,注意结构函数名,保持基本量不变,繁难向着简易变。 逆反原则作指导,升幂降次和差积。条件等式的证明,方程思想指路明。 万能公式不一般,化为有理式悉拿居先。公式顺用和逆用,变形运用加巧用 1加余弦想余弦,1 减余弦想正弦,幂升一次角减半,升幂降次它为范 三角函数反函数,实质就是求角度,先求三角函数值,再判角取值范围 利用直角三角形,形象直观好换名,简单三角的方程,化为最首陆蠢简求解集

    三、《不等式》

    解不等式的途径,利用函数的性质。对指无理不等式,化为有理不等式。 高次向着低次代,步步转化要等价。数形之间互转化,帮助解答作用大。 证不等式的方法,实数性质威力大。求差与0比大小,作商和1争高下。 直接困难分析好,思路清晰综合法。非负常用基本式,正面难则反证法。 还有重要不等式,以及数学归纳法。图形函数来帮助,画图建模构造法。

    四、《数列》

    等差等比两数列,通项公式N项和。两个有限求极限,四则运算顺序换。 数列问题多变幻,方程化归整体算。数列求和比较难,错位相消巧转换, 取长补短高斯法,裂项求和公式算。归纳思想非常好,编个程序好思考: 一算二看三联想,猜测证明不可少。还有数学归纳法,证明步骤程序化: 首先验证再假定,从 K向着K加1,推论过程须详尽,归纳原理来肯定。

    五、《复数》

    虚数单位i一出,数集扩大到复数。一个复数一对数,横纵坐标实虚部。 对应复平面上点,原点与它连成箭。箭杆与X轴正向,所成便是辐角度。 箭杆的长即是模,常将数形来结合。代数几何三角式,相互转化试一试。 代数运算的实质,有者陪i多项式运算。i的正整数次慕,四个数值周期现。 一些重要的结论,熟记巧用得结果。虚实互化本领大,复数相等来转化。 利用方程思想解,注意整体代换术。几何运算图上看,加法平行四边形, 减法三角法则判;乘法除法的运算,逆向顺向做旋转,伸缩全年模长短。 三角形式的运算,须将辐角和模辨。利用棣莫弗公式,乘方开方极方便。 辐角运算很奇特,和差是由积商得。四条性质离不得,相等和模与共轭, 两个不会为实数,比较大小要不得。复数实数很密切,须注意本质区别。

    六、《排列、组合、二项式定理》

    加法乘法两原理,贯穿始终的法则。与序无关是组合,要求有序是排列。 两个公式两性质,两种思想和方法。归纳出排列组合,应用问题须转化。 排列组合在一起,先选后排是常理。特殊元素和位置,首先注意多考虑。 不重不漏多思考,捆绑插空是技巧。排列组合恒等式,定义证明建模试。 关于二项式定理,中国杨辉三角形。两条性质两公式,函数赋值变换式。

    七、《立体几何》

    点线面三位一体,柱锥台球为代表。距离都从点出发,角度皆为线线成。 高中《立体几何》

    垂直平行是重点,证明须弄清概念。线线线面和面面、三对之间循环现。 方程思想整体求,化归意识动割补。计算之前须证明,画好移出的图形。 立体几何辅助线,常用垂线和平面。射影概念很重要,对于解题最关键。 异面直线二面角,体积射影公式活。公理性质三垂线,解决问题一大片。

    八、《平面解析几何》

    有向线段直线圆,椭圆双曲抛物线,参数方程极坐标,数形结合称典范。 笛卡尔的观点对,点和有序实数对,两者—一来对应,开创几何新途径。 两种思想相辉映,化归思想打前阵;都说待定系数法,实为方程组思想。 三种类型集大成,画出曲线求方程,给了方程作曲线,曲线位置关系判。 四件是法宝,坐标思想参数好;平面几何不能丢,旋转变换复数求。 解析几何是几何,得意忘形学不活。图形直观数入微,数学本是数形学。

    编辑本段数学 必修1

    1. 集合 (约4课时) (1)集合的含义与表示

    高中数学(15张)①通过实例,了解集合的含义,体会元素与集合的“属于”关系。 ②能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用。 (2)集合间的基本关系 ①理解集合之间包含与相等的含义,能识别给定集合的子集。 ②在具体情境中,了解与空集的含义。 (3)集合的基本运算 ①理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集。 ②理解在给定集合中一个子集的补集的含义,会求给定子集的补集。 ③能使用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用。 2. 函数概念与基本初等函数 (约32课时) (1)函数 ①进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念。 ②在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数。 ③了解简单的分段函数,并能简单应用。 ④通过已学过的函数特别是二次函数,理解函数的单调性、最大(小)值及其几何意义;结合具体函数,了解奇偶性的含义。 ⑤学会运用函数图象理解和研究函数的性质(参见例1)。 (2)指数函数 ①(细胞的分裂,考古中所用的C的衰减,药物在人体内残留量的变化等),了解指数函数模型的实际背景。 ②理解有理指数幂的含义,通过具体实例了解实数指数幂的意义,掌握幂的运算。 ③理解指数函数的概念和意义,能借助计算器或计算机画出具体指数函数的图象,探索并理解指数函数的单调性与特殊点。 ④在解决简单实际问题的过程中,体会指数函数是一类重要的函数模型(参见例2)。 (3)对数函数 ①理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;通过阅读材料,了解对数的产生历史以及对简化运算的作用。 ②通过具体实例,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,体会对数函数是一类重要的函数模型;能借助计算器或计算机画出具体对数函数的图象,探索并了解对数函数的单调性与特殊点。 ③知道指数函数 与对数函数 互为反函数(a>0,a≠1)。 (4)幂函数 通过实例,了解幂函数的概念;结合函数 的图象,了解它们的变化情况。 (5)函数与方程 ①结合二次函数的图象,判断一元二次方程根的存在性及根的个数,从而了解函数的零点与方程根的联系。 ②根据具体函数的图象,能够借助计算器用二分法求相应方程的近似解,了解这种方法是求方程近似解的常用方法。 (6)函数模型及其应用 ①利用计算,比较指数函数、对数函数以及幂函数增长差异;结合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的含义。 ②收集一些社会生活中普遍使用的函数模型(指数函数、对数函数、幂函数、分段函数等)的实例,了解函数模型的广泛应用。 (7)实习作业 根据某个主题,收集17世纪前后发生的一些对数学发展起重大作用的历史事件和人物(开普勒、伽利略、笛卡儿、牛顿、莱布尼茨、欧拉等)的有关资料或现实生活中的函数实例,采取小组合作的方式写一篇有关函数概念的形成、发展或应用的文章,在班级中进行交流。具体要求参见数学文化的要求。

    编辑本段数学 必修2

    1. 立体几何初步

    (约18课时) (1)空间几何体 ①利用实物模型、计算机观察大量空间图形,认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构。 ②能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述的三视图所表示的立体模型,会使用材料(如纸板)制作模型,会用斜二侧法画出它们的直观图。 ③通过观察用两种方法(平行投影与中心投影)画出的视图与直观图,了解空间图形的不同表示形式。 ④完成实习作业,如画出某些建筑的视图与直观图(在不影响图形特征的基础上,尺寸、线条等不作严格要求)。 ⑤了解球、棱柱、棱锥、台的表面积和体积的计算公式(不要求记忆公式)。 (2)点、线、面之间的位置关系 ①借助长方体模型,在直观认识和理解空间点、线、面的位置关系的基础上,抽象出空间线、面位置关系的定义,并了解如下可以作为推理依据的公理和定理。 ◆公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内。 ◆公理2:过不在一条直线上的三点,有且只有一个平面。 ◆公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。 ◆公理4:平行于同一条直线的两条直线平行。 ◆定理:空间中如果两个角的两条边分别对应平行,那么这两个角相等或互补。 ②以立体几何的上述定义、公理和定理为出发点,通过直观感知、操作确认、思辨论证,认识和理解空间中线面平行、垂直的有关性质与判定。 操作确认,归纳出以下判定定理。 ◆平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。 ◆一个平面内的两条相交直线与另一个平面平行,则这两个平面平行。 ◆一条直线与一个平面内的两条相交直线垂直,则该直线与此平面垂直。 ◆一个平面过另一个平面的垂线,则两个平面垂直。 操作确认,归纳出以下性质定理,并加以证明。 ◆一条直线与一个平面平行,则过该直线的任一个平面与此平面的交线与该直线平行。 ◆两个平面平行,则任意一个平面与这两个平面相交所得的交线相互平行。 ◆垂直于同一个平面的两条直线平行。 ◆两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直。 ③能运用已获得的结论证明一些空间位置关系的简单命题。

    2. 平面解析几何初步

    (约18课时) (1)直线与方程 ①在平面直角坐标系中,结合具体图形,探索确定直线位置的几何要素。 ②理解直线的倾斜角和斜率的概念,经历用代数方法刻画直线斜率的过程,掌握过两点的直线斜率的计算公式。 ③能根据斜率判定两条直线平行或垂直。 ④根据确定直线位置的几何要素,探索并掌握直线方程的几种形式(点斜式、两点式及一般式),体会斜截式与一次函数的关系。 ⑤能用解方程组的方法求两直线的交点坐标。 ⑥探索并掌握两点间的距离公式、点到直线的距离公式,会求两条平行直线间的距离。 (2)圆与方程 ①回顾确定圆的几何要素,在平面直角坐标系中,探索并掌握圆的标准方程与一般方程。 ②能根据给定直线、圆的方程,判断直线与圆、圆与圆的位置关系。 ③能用直线和圆的方程解决一些简单的问题。 (3)在平面解析几何初步的学习过程中,体会用代数方法处理几何问题的思想。 (4)空间直角坐标系 ①通过具体情境,感受建立空间直角坐标系的必要性,了解空间直角坐标系,会用空间直角坐标系刻画点的位置。 ②通过表示特殊长方体(所有棱分别与坐标轴平行)顶点的坐标,探索并得出空间两点间的距离公式。

    编辑本段数学 必修3

    1. 算法初步

    (约12课时) (1)算法的含义、程序框图 ①通过对解决具体问题过程与步骤的分析(如二元一次方程组求解等问题),体会算法的思想,了解算法的含义。 ②通过模仿、操作、探索,经历通过设计程序框图表达解决问题的过程。在具体问题的解决过程中(如三元一次方程组求解等问题),理解程序框图的三种基本逻辑结构:顺序、条件分支、循环。 (2)基本算法语句:经历将具体问题的程序框图转化为程序语句的过程,理解几种基本算法语句——输入语句、输出语句、赋值语句、条件语句、循环语句,进一步体会算法的基本思想。 (3)通过阅读中国古代数学中的算法案例,体会中国古代数学对世界数学发展的贡献。

    2. 统计

    (约16课时) (1)随机抽样 ①能从现实生活或其他学科中提出具有一定价值的统计问题。 ②结合具体的实际问题情境,理解随机抽样的必要性和重要性。 ③在参与解决统计问题的过程中,学会用简单随机抽样方法从总体中抽取样本;通过对实例的分析,了解分层抽样和抽样方法。 ④能通过试验、查阅资料、设计调查问卷等方法收集数据。 (2)用样本估计总体 ①通过实例体会分布的意义和作用,在表示样本数据的过程中,学会列频率分布表、画频率分布直方图、频率折线图、茎叶图(参见例1),体会它们各自的特点。 ②通过实例理解样本数据标准差的意义和作用,学会计算数据标准差。 ③能根据实际问题的需求合理地选取样本,从样本数据中提取基本的数字特征(如平均数、标准差),并作出合理的解释。 ④在解决统计问题的过程中,进一步体会用样本估计总体的思想,会用样本的频率分布估计总体分布,会用样本的基本数字特征估计总体的基本数字特征;初步体会样本频率分布和数字特征的随机性。 ⑤会用随机抽样的基本方法和样本估计总体的思想,解决一些简单的实际问题;能通过对数据的分析为合理的决策提供一些依据,认识统计的作用,体会统计思维与确定性思维的差异。 ⑥形成对数据处理过程进行初步评价的意识。 (3)变量的相关性 ①通过收集现实问题中两个有关联变量的数据作出散点图,并利用散点图直观认识变量间的相关关系。 ②经历用不同估算方法描述两个变量线性相关的过程。知道最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程(参见例2)。

    3. 概率

    (约8课时) (1)在具体情境中,了解随机事件发生的不确定性和频率的稳定性,进一步了解概率的意义以及频率与概率的区别。 (2)通过实例,了解两个互斥事件的概率加法公式。 (3)通过实例,理解古典概型及其概率计算公式,会用列举法计算一些随机事件所含的基本事件数及事件发生的概率。 (4)了解随机数的意义,能运用模拟方法(包括计算器产生随机数来进行模拟)估计概率,初步体会几何概型的意义(参见例3)。 (5)通过阅读材料,了解人类认识随机现象的过程。

    编辑本段数学 必修4

    1. 三角函数

    (约16课时) (1)任意角、弧度 了解任意角的概念和弧度制,能进行弧度与角度的互化。 (2)三角函数 ①借助单位圆理解任意角三角函数(正弦、余弦、正切)的定义。 ②借助单位圆中的三角函数线推导出诱导公式( 的正弦、余弦、正切),能画出 的图象,了解三角函数的周期性。 ③借助图象理解正弦函数、余弦函数在 ,正切函数在 上的性质(如单调性、最大和最小值、图象与x轴交点等)。 ④理解同角三角函数的基本关系式: ⑤结合具体实例,了解 的实际意义;能借助计算器或计算机画出 的图象,观察参数A,ω, 对函数图象变化的影响。 ⑥会用三角函数解决一些简单实际问题,体会三角函数是描述周期变化现象的重要函数模型。

    2. 平面向量

    (约12课时) (1)平面向量的实际背景及基本概念 通过力和力的分析等实例,了解向量的实际背景,理解平面向量和向量相等的含义,理解向量的几何表示。 (2)向量的线性运算 ①掌握向量加、减法的运算,并理解其几何意义。 ②掌握向量数乘的运算,并理解其几何意义,以及两个向量共线的含义。 ③了解向量的线性运算性质及其几何意义。 (3)平面向量的基本定理及坐标表示 ①了解平面向量的基本定理及其意义。 ②掌握平面向量的正交分解及其坐标表示。 ③会用坐标表示平面向量的加、减与数乘运算。 ④理解用坐标表示的平面向量共线的条件。 (4)平面向量的数量积 ①通过物理中“功”等实例,理解平面向量数量积的含义及其物理意义。 ②体会平面向量的数量积与向量投影的关系。 ③掌握数量积的坐标表达式,会进行平面向量数量积的运算。 ④能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系。 (5)向量的应用 经历用向量方法解决某些简单的平面几何问题、力学问题与其他一些实际问题的过程,体会向量是一种处理几何问题、物理问题等的,发展运算能力和解决实际问题的能力。

    3. 三角恒等变换

    (约8课时) (1)经历用向量的数量积推导出两角差的余弦公式的过程,进一步体会向量方法的作用。 (2)能从两角差的余弦公式导出两角和与差的正弦、余弦、正切公式,二倍角的正弦、余弦、正切公式,了解它们的内在联系。 (3)能运用上述公式进行简单的恒等变换(包括引导导出积化和差、和差化积、半角公式,但不要求记忆)。

    编辑本段数学 必修5

    1. 解三角形

    (约8课时) (1)通过对任意三角形边长和角度关系的探索,掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题。 (2)能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题。

    2. 数列

    (约12课时) (1)数列的概念和简单表示法 了解数列的概念和几种简单的表示方法(列表、图象、通项公式),了解数列是一种特殊函数。 (2)等差数列、等比数列 ①理解等差数列、等比数列的概念。 ②探索并掌握等差数列、等比数列的通项公式与前n项和的公式。 ③能在具体的问题情境中,发现数列的等差关系或等比关系,并能用有关知识解决相应的问题(参见例1)。 ④体会等差数列、等比数列与一次函数、指数函数的关系。

    3. 不等式

    (约16课时) (1)不等关系 感受在现实世界和日常生活中存在着大量的不等关系,了解不等式(组)的实际背景。 (2)一元二次不等式 ①经历从实际情境中抽象出一元二次不等式模型的过程。 ②通过函数图象了解一元二次不等式与相应函数、方程的联系。 ③会解一元二次不等式,对给定的一元二次不等式,尝试设计求解的程序框图。 (3)二元一次不等式组与简单线性规划问题 ①从实际情境中抽象出二元一次不等式组。 ②了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组(参见例2)。 ③从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决(参见例3)。 (4)基本不等式: 。 ①探索并了解基本不等式的证明过程。 ②会用基本不等式解决简单的最大(小)值问题(参见例4)。 函数的性质 指数和对数 (1)定义域、值域、对应法则 (2)单调性 对于任意x1,x2∈D 若x1f(x2),称f(x)在D上是减函数 (3)奇偶性 对于函数f(x)的定义域内的任一x,若f(-x)=f(x),称f(x)是偶函数 若f(-x)=-f(x),称f(x)是奇函数 (4)周期性 对于函数f(x)的定义域内的任一x,若存在常数T,使得f(x+T)=f(x),则称f(x)是周期函数(1)分数指数幂 数学 选修

    编辑本段选修2-1

    1. 常用逻辑用语

    (约8课时) (1)命题及其关系 ①了解命题的逆命题、否命题与逆否命题。 ②理解必要条件、充分条件与充要条件的意义,会分析四种命题的相互关系。 (2)简单的逻辑联结词 了解逻辑联结词“或”“且”“非”的含义。 (3)全称量词与存在量词 ①理解全称量词与存在量词的意义。 ②能正确地对含有一个量词的命题进行否定。

    2. 圆锥曲线与方程

    (约16课时) (1)圆锥曲线 ①了解圆锥曲线的实际背景,感受圆锥曲线在刻画现实世界和解决实际问题中的作用。 ②经历从具体情境中抽象出椭圆、抛物线模型的过程,掌握它们的定义、标准方程、几何图形及简单性质。 ③了解双曲线的定义、几何图形和标准方程,知道双曲线的有关性质。 ④能用坐标法解决一些与圆锥曲线有关的简单几何问题(直线与圆锥曲线的位置关系)和实际问题。 ⑤通过圆锥曲线的学习,进一步体会数形结合的思想。 (2)曲线与方程 了解曲线与方程的对应关系,进一步感受数形结合的基本思想。 (3)椭圆、双曲线与抛物线 椭圆 标准方程x^2/a^2+y^2/b^2=1(a>b>0,c^2=a^2-b^2)(焦点在x轴上) 焦点F1(-c,0),F2(c,0) 离心率e=c/a 双曲线 标准方程x^2/a^2-y^2/b^2=1(a>0,b>0,c^2=a^2+b^2)(焦点在x轴上) 焦点F1(-c,0),F2(c,0) 离心率e=c/a 抛物线 标准方程 y^2=2px(p>0)(焦点在x轴正半轴上) 焦点F(p/2,0)

    3. 空间向量与立体几何

    (约12课时) (1)空间向量及其运算 (2)空间向量的应用

    编辑本段选修2-2

    1. 导数及其应用 (约24课时) (1)导数概念及其几何意义 ①通过对大量实例的分析,经历由平均变化率过渡到瞬时变化率的过程,了解导数概念的实际背景,知道瞬时变化率就是导数,体会导数的思想及其内涵(参见选修1-1案例中的例2、例3)。 ②通过函数图象直观地理解导数的几何意义。 (2)导数的运算 ①能根据导数定义求函数的导数。 ②能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数,能求简单的复合函数(仅限于形如 )的导数。 ③会使用导数公式表。 (3)导数在研究函数中的应用 ①借助几何直观探索并了解函数的单调性与导数的关系(参见选修1-1案例中的例4);能利用导数研究函数的单调性,会求不超过三次的多项式函数的单调区间。 ②结合函数的图象,了解函数在某点取得极值的必要条件和充分条件;会用导数求不超过三次的多项式函数的极大值、极小值,以及闭区间上不超过三次的多项式函数最大值、最小值;体会导数方法在研究函数性质中的一般性和有效性。

    猜你喜欢