数学中考知识点归纳?中考数学必考知识点如下:1、三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半。2、圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角。3、平行四边形的定义和相关概念,平行四边形的性质,那么,数学中考知识点归纳?一起来了解一下吧。
初三学习的知识是初中三年学习的汇总,为了方便大家更好地复习数学,以下是我分享给大家的初三数学重点知识点,希望可以帮到你!
初三数学重点知识点
1.不在同一直线上的三点确定一个圆。
2.垂径定理 垂直于弦的直径平分这条弦并且平分弦所对的两条弧
推论1
①平分弦不是直径的直径垂直于弦,并且平分弦所对的两条弧
②弦的垂直平分线经过圆心,并且平分弦所对的两条弧
③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧
推论2 圆的两条平行弦所夹的弧相等
3.圆是以圆心为对称中心的中心对称图形
4.圆是定点的距离等于定长的点的 ***
5.圆的内部可以看作是圆心的距离小于半径的点的 ***
6.圆的外部可以看作是圆心的距离大于半径的点的 ***
7.同圆或等圆的半径相等
8.到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆
9.定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦 相等,所对的弦肢旁的弦心距相等
10.推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两 弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等。
11定理 圆的内接四边形的对角互补,并且任何一个外角都等于它 的内对角
12.①直线L和⊙O相交 d
②直线L和⊙O相切 d=r
③直线L和⊙O相离 d>r
13.切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线
14.切线的性质定理 圆的切线垂直于经过切点的半径
15.推论1 经过圆心且垂直于切线的直线必经过切点
16.推论2 经过切点且垂直于切线的直线必经过圆心
17.切线长定理 从圆外一点引圆的两条切线,它们的切线长相等, 圆心和这一点的连线平分两条切线的夹角
18.圆的外切四边形的两组对边的和相等 外角等于内对角
19.如果两个圆相切,那么切点一定在连心线上
20.①两圆外离 d>R+r
②两圆外切 d=R+r
③.两圆相交 R-rr
④.两圆内切 d=R-rR>r ⑤两圆内含dr
21.定理 相交两圆的连心线垂直平分两圆的公共弦
22.定理 把圆分成nn≥3:
⑴依次连结各分点所得的多边形是这个圆的内接正n边形
⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形
23.定理 任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆
24.正n边形的每个内角都等于n-2×180°/n
25.定理 正n边形的半径和边心距把正n边形分成2n个全等的直角三角形
26.正n边形的面积Sn=pnrn/2 p表示正n边形的周长
27.正三角形面积√3a/4 a表示边长
28.如果在一个顶历郑橡点周围有k个正n边形的丛伍角,由于这些角的和应为 360°,因此k×n-2180°/n=360°化为n-2k-2=4
29.弧长计算公式:L=n兀R/180
30.扇形面积公式:S扇形=n兀R^2/360=LR/2
31.内公切线长= d-R-r 外公切线长= d-R+r
32.定理 一条弧所对的圆周角等于它所对的圆心角的一半
33.推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等
34.推论2 半圆或直径所对的圆周角是直角;90°的圆周角所 对的弦是直径
35.弧长公式 l=a*r a是圆心角的弧度数r >0 扇形面积公式 s=1/2*l*r
初三数学复习技巧
注重课本知识
全面复习基础知识,加强基本技能训练的第一阶段的复习工作我们已经结束了,在第二阶段的复习中,反思和总结上一轮复习中的遗漏和缺憾,会发现有些知识还没掌握好,解题时还没有思路,因此要做到边复习边将知识进一步归类,加深记忆;还要进一步理解概念的内涵和外延,牢固掌握法则、公式、定理的推导或证明,进一步加强解题的思路和方法;同时还要查询一些类似的题型进行强化训练,要及时有目的有针对性的补缺补漏,直到自己真正理解会做为止,决不要轻易地放弃。
初中数学知识点归纳
1、同一平面内过两点的直线有且只有一条。
2、两点之间线段最短。
3、过一点有且只有一条直线和已知直线垂直。
4、直线外一点与直线上各点的连接的线段中垂线段最短。
5、经过直线外一点,有且只有一条直线与这条直线平行。
6、如果两条直线与第三条直线平行,那么这两条直线平行。
7、同位角相等,两直线平行。
8、内错角相等,两直线平行。
9、同旁内角互补,两直线平行。
10、三角掘悄兄形的任意两边和大于第三边。
中考重点知识点
11、边角边定理(SAS):有两边和他们的夹角对应相等的三角形是全等三角形。
12、角边角定理(ASA):有两角和他们的夹边相等的三角形是全等三角形。
13、(AAS)有两角和其中一角的对边相等的三角形是全等三角形。
14、边边边定理(SSS):三边对应相等的三角形是全等的。
15、角平分线上的点到这个角两边的距离相等。
16、等腰三角形的两个底角相等。
17、等腰三角形的顶角角平分线平分且垂直底线。
18、等腰三角形的角平分线与底边上的中线与高相同。
19、三个角都相等的三角形是等边三角形。
20、有一个角是60°的三角形是等边三角形。
初中数学重点考点
21、直角三角形中,如果一个角是30°,那他所对应的边是斜边的一半。
数学中考知识点如下:
1、绝对值:绝对值是指一个数在数轴上所对应点到原点的距离。正数的绝对值是它本身,负数的绝对值是它的相反数;0的绝对值是0,两个负数,绝对值大的反而小。
2、求n个相同因数乘积的运算,叫做乘方,乘方的结果叫做幂。其中,a叫做底数,n叫做指数。当a看作a的n次乘方的结果时,也可读作“a的n次幂”或“a的n次方”。
3、合并同类项:把多项式中的同类项合并成一项,叫做合并同类项。
4、在同一平面内,到定点的察漏距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆。
5、除法的估算巧虚方法是多样败宽烂的,通常我们将被除数(三位数)看成一个接近它的整百整十数,除数(一位数)不变,然后计算。或者按照乘法口诀把被除数估成一个合适的数,再计算。
中考数学必考知识点如下:
1、三角形中位线定理:三角形的中位线平行于第三边,并且等于它知历的一半。
2、圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角。
3、平行四边形的定义和相关概念,平行四边形的性质,平行四边形的对角线的性质,两条平行线距离。
4、平行四边形的判定定理,平行四边形的性质与判定的综合运用,三角形的中位线定理。
5、矩形的性质和判定,直角三角形斜边拍茄上中线,菱形的性质和判定定理,正方形的性质搭贺搜和判定。
初三数学知识点整理1
1.数轴
(1)数轴的概念:规定了原点、正方向、单位长度的直线叫做数轴.
数轴的三要素:原点,单位长度,正方向。
(2)数轴上的点:所有的有理数都可以用数轴上的点表示,但数轴上的点不都表示有理数.(一般取右方向为正方向,数轴上的点对应任意实数,包括无理数.)
(3)用数轴比较大小:一般来说,当数轴方向朝右时,右边的数总比左边的数大。
重点知识:
初中数学第一课,认识正数与负数!新初一的来~
2.相反数
(1)相反数的概念:只有符号不同的两个数叫做互为相反数.
(2)相反数的意义:掌握相反数是成对出现的,不能单独存在,从数轴上看,除0外,互为相反数的两个数,它们分别在原点两旁且到原点距离相等。
(3)多重符号的化简:与“+”个数无关,有奇数个“﹣”号结果为负,有偶数个“﹣”号,结果为正。
(4)规律方法总结:求一个数的相反数的方法就是在这个数的前边添加“﹣”,如a的相反数是﹣a,m+n的相反数是﹣(m+n),这时m+n是一个整体,在整体前面添负号时,要用小括号。
3.绝对值
1.概念:数轴上某个数与原点的距离叫做这个数的绝对值。
①互为相反数的两个数绝对值相等;
②绝对值等于一个正数的数有两个,绝对值等于0的数有一个,没有绝对值等于负数的数.
③有理数的绝对值都是非负数.
2.如果用字母a表示有理数,则数a 绝对值要由字母a本身的取值来确定:
①当a是正有理数时,a的绝对值是它本身a;
②当a是负有理数时,a的绝对值是它的相反数﹣a;
③当a是零时,a的绝对值是零.
即|a|={a(a>0)0(a=0)﹣a(a<0)
中考数学知识点
1、反比例函数的概念
一般地,函数(k是常数,k0)叫做反比例函数。
以上就是数学中考知识点归纳的全部内容,数学中考知识点如下:1、绝对值:绝对值是指一个数在数轴上所对应点到原点的距离。正数的绝对值是它本身,负数的绝对值是它的相反数;0的绝对值是0,两个负数,绝对值大的反而小。2、求n个相同因数乘积的运算。