2017全国数学高考答案?www.ks5u.com2017年普通高等学校招生全国统一考试(全国卷3)理科数学一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知集合,,那么,2017全国数学高考答案?一起来了解一下吧。
com/zhidao/wh%3D450%2C600/sign=4dd9327da2d3fd1f365caa3e057e0929/902397dda144ad3496d026d4daa20cf431ad8572.jpg"
随着2017年高考数学科目的结束,家长和考生最想知道的无非是高考数学试题的答案,下面我为大家提供2017年全国高考一卷理科综合试卷的试题和答案,供家长和学生们参考,祝愿应届高考学子取得理想的成绩。
29.(10分)
根据遗传物质的化学组成,可将病毒分为RNA病毒和DNA病毒两种类型,有些病毒对人类健康会造成很大危害,通常,一种新病毒出现后需要确定该病毒的类型。
假设在宿主细胞内不发生碱基之间的相互转换拦毁,请利用放射性同位素标记的方法,以体基宽外培养的宿主细胞等为材料,设计实验以确定一种新病毒的类型,简要写出(1)实验思路,(2)预期实验结果及结论即可。(要求:实验包含可相互印证的甲、乙两个组)
此题答案为
(1)由于DNA和RNA元素组成元素相同,但其有各自的特有碱基,DNA特有碱基为T,RNA特有碱基为U,利用放射性标记碱基T培养宿主细胞,使宿主细胞含有放射性同位素的碱基T,在利用病毒侵染宿主细胞,看子代病毒是否含有碱基T
(2)用放射性同位素32p标记碱基T,31p的碱基U培养宿主细胞,使其宿主细胞含有23p的碱基T,再用病毒去侵染含23p碱基T的宿主细胞,看子代病毒是否含有碱基T,若子代病毒具有放射性则说明其遗传物质是DNA,若不含放射性,简锋备则遗传物质是RNA.
以上为全国高考一卷理科综合试卷的部分试题及答案,仅供参考。
一、选择题
1.已知函数f(x)=2x3-x2+m的图象上A点处的切线与直线x-y+3=0的夹角为45°,则A点的横坐标为()
A.0 B.1 C.0或 D.1或
答案:C命题立意:本题考查导数的应用,难度中等.
解题思路:直线x-y+3=0的倾斜角为45°,
切线的倾斜角为0°或90°,由f′(x)=6x2-x=0可得x=0或x=,故选C.
易错点拨:常见函数的切线的斜率都是存在的,所以倾斜角不会是90°.
2.设函数f(x)=则满足f(x)≤2的x的取值范围是()
A.[-1,2] B.[0,2]
C.[1,+∞) D.[0,+∞)
答案:D命题立意:本题考查分段函数的相关知识,求解时可分为x≤1和x>1两种情况进行求解,再对所求结果求并集即得最终结果.
解题思路:若x≤1,则21-x≤2,解得0≤x≤1;若x>1,则1-log2 x≤2,解得x>1,综上可知,x≥0.故选D.
3.函数y=x-2sin x,x的大致图象是()
答案:D解析思路:因为函数为奇函数,所以图象关于原点对称,排除A,B.函数的导数为f′(x)=1-2cos x,由f′(x)=1-2cos x=0,得cos x=,所以x=.当00,函数单调递增,所以当x=时,函数取得极小值.故选D.
4.已知函数f(x)满足竖宏:当x≥4时,f(x)=2x;当x<4时,f(x)=f(x+1),则f=()
A. B. C.12 D.24
答案:D命题立意:本题考查指数式的运算,难度中等.
解题思路:利用指数式的运算法则求解.因为2+log =2+log2 3(3,4),所以f=f=f(3+log2 3)=23+log2 3=8×3=24.
5.已知函数f(x)=若关于x的方程f2(x)-af(x)=0恰好有5个不同的实数解,则a的取值范围是()
A.(0,1) B.(0,2) C.(1,2) D.(0,3)
答案:
A解题思路:设t=f(x),则方程为t2-at=0,解得t=0或t=a,
即f(x)=0或衡伍f(x)=a.
如图,作出函数的图象,
由函数图象可知,f(x)=0的解有两个,
故要使方程f2(x)-af(x)=0恰有5个不同的解,则方程f(x)=a的解必有三个,此时0
6.若R上的奇函数y=f(x)的图象关于直线x=1对称,且当0
A.4 020 B.4 022 C.4 024 D.4 026
答案:B命题立意:本题考查函数性质的应用及数形结合思想,考查推理与转化能力,难度中等.
解题思路:由于函数图象关于直线x=1对称,故有f(-x)=f(2+x),又函数为奇函数,故-f(x)=f(2+x),从而得-f(x+2)=f(x+4)=f(x),即函数以4为周期,据题意其在一个周期内的图象如图所示.
又函数为定义在R上的奇函数,故f(0)=0,因此f(x)=+f(0)=,因此在区间(2 010,2 012)内的函数图象可由区间(-2,0)内的图象向右平移2 012个单位得到,此时两根关于直线x=2 011对称,故x1+x2=4 022.
7.已知函数满足f(x)=2f,当x[1,3]时,f(x)=ln x,若在区间内,函数g(x)=f(x)-ax有三个不同零点,则实数a的取值范围是()
A. B.
C. D.
答案:A思路点拨:当x∈时,则1<≤3,
f(x)=2f=2ln=-2ln x.
f(x)=
g(x)=f(x)-ax在区间内有三个不同零点,即函数y=与y=a的图象在上有三个不同的交点.
当x∈时,y=-,
y′=<0,
y=-在上递减,
y∈(0,6ln 3).
当x[1,3]时,y=,
y′=,
y=在[1,e]上递增,在[e,3]上递减.
结合图象,所以y=与y=a的图象有三个交点时,a的取值范围为.
8.若函数f(x)=loga有最小值,则实数a的取值余拦册范围是()
A.(0,1) B.(0,1)(1,)
C.(1,) D.[,+∞)
答案:C解题思路:设t=x2-ax+,由二次函数的性质可知,t有最小值t=-a×+=-,根据题意,f(x)有最小值,故必有解得1
9.已知函数f(x)=若函数g(x)=f(x)-m有三个不同的零点,则实数m的取值范围为()
A. B.
C. D.
答案:
C命题立意:本题考查函数与方程以及数形结合思想的应用,难度中等.
解题思路:由g(x)=f(x)-m=0得f(x)=m,作出函数y=f(x)的图象,当x>0时,f(x)=x2-x=2-≥-,所以要使函数g(x)=f(x)-m有三个不同的零点,只需直线y=m与函数y=f(x)的图象有三个交点即可,如图.只需-
10.在实数集R中定义一种运算“*”,对任意给定的a,bR,a*b为确定的实数,且具有性质:
(1)对任意a,bR,a*b=b*a;
(2)对任意aR,a*0=a;
(3)对任意a,bR,(a*b)*c=c*(ab)+(a*c)+(c*b)-2c.
关于函数f(x)=(3x)*的性质,有如下说法:函数f(x)的最小值为3;函数f(x)为奇函数;函数f(x)的单调递增区间为,.其中所有正确说法的个数为()
A.0 B.1 C.2 D.3
答案:B解题思路:f(x)=f(x)*0=*0=0]3x×+[(3x)*0]+)-2×0=3x×+3x+=3x++1.
当x=-1时,f(x)0,得x>或x<-,因此函数f(x)的单调递增区间为,,即正确.
二、填空题
11.已知f(x)=若f[f(0)]=4a,则实数a=________.
答案:2命题立意:本题考查了分段函数及复合函数的相关知识,对复合函数求解时,要从内到外逐步运算求解.
解题思路:因为f(0)=2,f(2)=4+2a,所以4+2a=4a,解得a=2.
12.设f(x)是定义在R上的奇函数,在(-∞,0)上有2xf′(2x)+f(2x)<0且f(-2)=0,则不等式xf(2x)<0的解集为________.
答案:(-1,0)(0,1)命题立意:本题考查函数的奇偶性与单调性的应用,难度中等.
解题思路:[xf(2x)]′=2xf′(2x)+f(2x)<0,故函数F(x)=xf(2x)在区间(-∞,0)上为减函数,又由f(x)为奇函数可得F(x)=xf(2x)为偶函数,且F(-1)=F(1)=0,故xf(2x)<0F(x)<0,当x0时,不等式解集为(0,1),故原不等式解集为(-1,0)(0,1).
13.函数f(x)=|x-1|+2cos πx(-2≤x≤4)的所有零点之和为________.
答案:6命题立意:本题考查数形结合及函数与方程思想的应用,充分利用已知函数的对称性是解答本题的关键,难度中等.
解题思路:由于函数f(x)=|x-1|+2cos πx的零点等价于函数g(x)=-|x-1|,h(x)=2cos πx的图象在区间[-2,4]内交点的横坐标.由于两函数图象均关于直线x=1对称,且函数h(x)=2cos πx的周期为2,结合图象可知两函数图象在一个周期内有2个交点且关于直线x=1对称,故其在三个周期[-2,4]内所有零点之和为3×2=6.
14.已知函数f(x)=ln ,若f(a)+f(b)=0,且0
答案:命题立意:本题主要考查对数函数的运算,函数的值域,考查运算求解能力,难度中等.
解题思路:由题意可知,ln +ln =0,
即ln=0,从而×=1,
化简得a+b=1,
故ab=a(1-a)=-a2+a=-2+,
又0
故0<-2+<.
B组
一、选择题
1.已知偶函数f(x)在区间[0,+∞)单调递减,则满足不等式f(2x-1)>f成立的x取值范围是()
A. B.
C. D.
答案:B解析思路:因为偶函数的图象关于y轴对称,在区间[0,+∞)单调递减,所以f(x)在(-∞,0]上单调递增,若f(2x-1)>f,则-<2x-1<,
随着2017年高考数学科目的结束,家长和考生最想知道的无非是简锋备高考数学试题的答案,下面我为大家提供2017年全国高考一卷理科综合试卷的试题和基宽答案,供家长和学生们参考,祝愿应届高考学子取得理想的成绩。
14.将质量为1.00Kg的模型火箭点火升空,50g燃烧的燃气以大小为600m/s的速度从火箭喷口在很短时间内喷出。在燃气喷出后的瞬间,火箭的动量大小为(喷出过程中重力和空气阻力可忽略)(A)
A.30kg·m/s B.5.7×10²kg·m/s C.6.0×10²kg·m/s D.6.3×10²kg·m/s
15.发球机从同一高度向正前方依次水平射出两个速度不同的乒乓球(忽略空气的影响)。速度较大的球越过球网,速度度较小的球没有越过球网;其原因是(C)
A. 速度度较小的球下降相同距离所用的时间较多
B. 速度度较小的球在下降相同距离时在竖直方向上的速度较大
C. 速度度较大的球通过同一水平距离所用的时间较少
D. 速度度较大的球在下降相同时间间隔内下降的距离较大
18.扫描对到显微镜(STM)可用来探测样品表面原子尺寸上的形貌,为了有效隔离外界震动对STM的扰动,在圆底盘周边沿其径向对称地安装若干对紫铜薄板,并施加磁场来快速衰减其微小震动,如图所示,拦毁无扰动时,按下列四种方案对紫铜薄板施加恒磁场;出现扰动后,对于紫铜薄板上下及其左右震动的衰减最有效的方案是(A)
以上为全国高考一卷理科综合试卷的部分试题及答案,仅供参考。
随着2017年高考数学科目的结束,家长和考生最想知道的无非是高考数学试题的答案,下面我为大家提供2017年全国高考二卷文科数学试卷的试题和答案,供家长和学生们参考,祝愿应届高考学子取得理想的成绩。
11.从分别写有1,2,3,4,5的5张卡片中随机基宽抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为
A.1/10 B.1/5 C.3/10 D.2/5
此题答案为 D
13.函数f(x)=2cosx+sinx的最大值为 .
此题答案为 根号五
15.长方体的长宽高分别为3,2,1,简锋备其顶点都在球O的球面上,则球O的表面拦毁积为
此题答案为 14π
16.△ABC的内角A,B,C的对边分别为a,b,c,若2bcosB=acosC+ccosA,则B=
此题答案为 π/3
17.(12分)
已知等差数列{an}的前n项和为Sn,等比数列{bn}的前n项和为Tn,a1=-1,b1=1,a3+b2=2.
(1)若a3+b2=5,求{bn}的通项公式;
(2)若T=21,求S1
以上为全国高考二卷文科数学试卷的部分试题及答案,仅供参考。
以上就是2017全国数学高考答案的全部内容,答案:B解题思路:f(x)=f(x)*0=*0=0]3x×+[(3x)*0]+)-2×0=3x×+3x+=3x++1.当x=-1时,f(x)0,得x>或x<-,因此函数f(x)的单调递增区间为,,即正确.二、。