目录六年纪数学公式大全 部分量的公式六年级 数学公式六年级全部公式 小学六年全部数学公式 六年级数学公式汇总
六年级数学必背公式:
1、每份数×份数=总数。
总数÷每份数=份数。
总数÷份数=每份数。
2、单价×数量=总价。
总价÷单价=数量。
总价÷数量=单价。
3、速度×时间=路程。
路程÷速度=时间。
路程÷时间=速度。
4、工效×工时=工作总量。
工作总量÷工效=工时。
工作总量÷工时=工效。
5、加数+加数=和。
和-一个加数=另一个加数。
6、被减数-减数=差。
被减数-差=减数。
差+减数=被减数。
7、因数×因数=积。
积÷一个因数=另一个因数。
小学六年级下册察灶做数学必背知识点:
负数必背知识点:
1、0既不是正数,也不是负数,它是正数和负数的分界,0大于所有负数,小于所有正数,负数比较大小,不考虑负号,数字大的数反而小。
2、“+”可以省略不写,“-”不能省略。
3、数轴的要素:正方向(箭头表示)、原点(0刻度)、单位长度(刻度),0左边的数都是负数,0右边的数都是正数
百分数知识点:
1、折扣:商品按原定价格的百分之几出售,叫做折扣,几折就表示十分之几,也就是百分之几十,例如八折就表示十分之八,就是按原价的80﹪出售。
2、成数:“几成”就是十分之几,也就是百分之几十,三成五就是十分之三点五,也就是35%。
3、应纳税额 = 总收入×税率,税率=应纳税额÷总收入,总收入=应纳税额÷税率。
4、利息=本金×利率×存期。
5、满100元减50元,就是在总价中取整百元部分,每个100元减去50元,不满100元的零头部分不优惠。
圆辩旁、圆柱、圆柱必背公式:
1、在同圆或等圆内,直径的长度是半径的2倍,公式d=2r;半径的长度是直径的一半,公式r=d÷2。
2、已知直径求周长:圆的周长=圆周率×直径,公式C=πd,直径=周长÷圆周率,公式d=C÷π。
3、已知半径求周长:圆的周长=2×圆周率×半径,公式C=2πr,半径=周长÷圆周率的2倍,公式r=C÷2π。
4、已知半径求面积:圆的面积=圆周率×半径的平方,公式S圆=πr2。
5、已知直径求面积:圆的面积=圆周率×(直径÷2)的平方,公式S圆 =π(d÷2)2。
6、圆柱的侧面积=底面的周长×高,公式S侧=Ch;圆柱的底面周长=侧面积÷高,公式C=s侧÷h;圆柱的高=侧面积÷底面周长,败衡公式h=S侧÷C。
7、圆柱的表面积=侧面积+2×底面积,公式 S表= S侧+2S底。
8、圆柱的体积等于底面积乘以高,公式 V圆柱=Sh,圆柱的高等于体积除以底面积,公式h=v÷s;圆柱的底面积等于体积除以高,公式s=v÷h。
9、一个圆锥的体积等于与它等底等高的圆柱体积的三分之一 ,圆锥体积公式:V=1 /3Sh。圆锥的高等于体积的3倍除以底面积,公式h=3v÷s;圆锥的底面积等于体积的3倍除以高,公式s=3v÷h。
10、环形的面积=大圆面积-小圆面积,S环 =πR -πr。
11、体积和高相等的圆锥与圆柱之间,圆锥的底面积是圆柱的三倍,即圆锥的底面积=圆柱底面积×3,圆柱底面积=圆锥底面积÷3。
六年级上册数学公式如下:
1、圆的周长=圆周率×直径=圆周率×半径×2 C=πd C =2πr。
2、乘法结合律:(ab)c=a(bc)。
3、梯形的面积=(上底+下底)×高÷2 S=(a+b)h÷2。
4、长轿戚方体的表面积=(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh)。
5、一个人的速度=相遇路程÷相枯帆腊遇时间-另一个人的速度。
6、长方体的体积=长×宽×高 公式:V=abh 。
7、长方体的体积=底面积×高 公式:V=abh 。
8、圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积,公式S=ch+2s=ch+2πr2 。
9、圆的面积=2半径×π,公式:S=πr2 。
10、圆柱的表没滑(侧)面积等于底面的周长乘高,公式:S=ch=πdh=2πrh 。
小学数学公式:
1、长方形的周长=(长+宽)×2 C=(a+b)×2
2、正方形的周长=边长×4 C=4a
3、长方形的面积=长×宽 S=ab
4、正方形的面积=边长×边长 S=a.a= a
5、三角形的面积=底×高÷2 S=ah÷2
6、平行四边形的面积=底×高 S=ah
7、梯形的面积=(上底+下底)×高÷2 S=(a+b)h÷2
8、直径=半径×2 d=2r 半径=直径÷2 r= d÷2
9、圆的周长=圆周率×直径=圆周率×半径×2 c=πd =2πr
10、圆的面积=圆周率×半径×半径 �0�8=πr
11、长方体的表面积=(长×宽+长×高+宽×高)×2
12、长方体烂物的体积 =长×宽×高 V =abh
13、正方体的表面积=棱长×棱长×6 S =6a
14、正方体的体积=棱长×棱长×棱长 V=a.a.a= a
15、圆柱的侧面积=底面圆的周长×高 S=ch
16、圆柱的表面积=上下底面面积+侧面积
S=2πr +2πrh=2π(d÷2) +2π(d÷2)h=2π(C÷2÷π) +Ch
17、圆柱的体积=底面积×高 V=Sh
V=πr h=π(d÷2) h=π(C÷2÷π) h
18、圆锥的体积=底面积×高÷3
V=Sh÷3=πr h÷3=π(d÷2) h÷3=π(C÷2÷π) h÷3
19、长方体(正方体、圆柱体)的体
1、 每份数×份数=总数 总数÷每份数=份数 总数÷份数=每份数
2、 1倍数×倍数=几倍数 几倍数÷1倍数=倍数 几倍数÷倍数=1倍数
3、 速度×时间=路程 路程÷速度=时间 路程÷时间=速度
4、 单价×数量=总价 总价÷单价=数量 总价÷数量=单价
5、 工作效率×工作时间=工作总量 工作总量÷工作效率=工作时间 工作总量÷工作时间=工作效率
6、 加数+加数=和 和-一个加数=另一个加数
7、 被减数-减数=差 被减数-差=减数 差+减数=被减数
8、 因数×因数=积 积÷一个因数=另一个因数
9、 被除数÷除数=商 被除数÷商=除数 商×除数=被除数
小学数学图形计算公式此销
1 、正方形 C周长 S面积 a边长 周长=边长×4 C=4a 面积=边长×边长 S=a×a
2 、正方体 V:体积 a:棱长 表面积=棱长×棱长×6 S表=a×a×6 体积=棱长×棱长×棱长 V=a×a×a
3 、长方形
C周长 S面积 a边长
周长=(长+宽)×2
C=2(a+b)
面积=长×宽
S=ab
4 、长方体
V:体积 s:面积 a:长 b: 宽 h:高
(1)表面积(长×宽+长×高+宽×高)×2
S=2(ab+ah+bh)
(2)体积=长×宽×高
V=abh
5 三角形
s面积 a底 h高
面积=底×高÷2
s=ah÷2
三角形高=面积 ×2÷底
三角形底=面积 ×2÷高
6 平行四边形
s面积 a底 h高
面积=底×高
s=ah
7 梯形
s面积 a上底 b下底 h高
面积=(上底+下底)×高÷2
s=(a+b)× h÷2
8 圆形
S面积 C周长 ∏ d=直径 r=半径
(1)周长=直径×∏=2×∏×半径
C=∏d=2∏r
(2)面积=半径×半径×∏
9 圆柱体
v:体积 h:高 s;底面积 r:底面半径 c:底面周长
(1)侧面积=底面周长×高
(2)表面积=侧面积+底面积×2
(3)体积=底面积×高
(4)体积=侧面积÷2×半径
10 圆锥体
v:体积 h:高 s;底面积 r:底面半径
体积=底面积×高÷3
总数÷总份数=平均数
和差问题
(和+差)÷2=大数
(和-差)÷2=小饥扒液数
和倍问题
和÷(倍数-1)=小数
小数×倍数=大数
(或者 和-小数=大数)
差倍问题
差÷(倍数-1)=小数
小数×倍数=大数
(或 小数+差=大数)
植树问题
1 非封闭线路上的植树问题主要可分为以下三种情形:
⑴如果在非封闭线路的两端都要植树,那么:
株数=段数+1=全长÷株距-1
全长=株距×(株数-1)
株距=全长÷(株数-1)
⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
⑶如果在非封闭线路的两端都不要植树,那么:
株数=段数-1=全长÷株距-1
全长=株距×(株数+1)
株距=全长÷(株数+1)
2 封闭线路上的植树问题的数量关系如下
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
盈亏问题
(盈+亏)÷两次分配量之差=参加分配的份数
(大盈-小盈)÷两次分配量之差=参加分配的份数
(大亏-小亏)÷两次分配量之差=参加分配的份数
相遇问题
相遇路程=速度和×相遇时间
相遇时间=相遇路程÷速度和
速度和=相遇路程÷相遇时间
追及问题
追及距离=速度差×追及时间
追及时间=追及距离÷速度差
速度差=追及距离÷追及时间
流水问题
顺流速度=静水速度+水流速度
逆流速度=静水速度-水流速度
静水速度=(顺流速度+逆流速度)÷2
水流速度=(顺流速度-逆流速度)÷2
浓度问题
溶质的重量+溶剂的重量=溶液的重量
溶质的重量÷溶液的重量×100%=浓度
溶液的重量×浓度=溶质的重量
溶质的重量÷浓度=溶液的重量
利润与折扣问题
利润=售出价-成本
利润率=利润÷成本×100%=(售出价÷成本-1)×100%
涨跌金额=本金×涨跌百分比
折扣=实际售价÷原售价×100%(折扣<1)
利息=本金×利率×时间
税后利息=本金×利率×时间×(1-20%)
时间单位换算
1世纪=100年 1年=12月
大月(31天)有:1\3\5\7\8\10\12月
小月(30天)的有:4\6\9\11月
平年2月28天, 闰年2月29天
平年全年365天, 闰年全年366天
1日=24小时 1时=60分
1分=60秒 1时=3600秒积=底面积×高 V=Sh
回答者: awmcyun - 初入江湖 二级 4-16 12:50
1.认识圆柱和圆锥,掌握它们的基本特征。认识圆柱的底面、侧面和高。认识圆锥的底面和高。通过对圆柱和圆锥的认识,牢记圆柱的表面积,圆柱的体积和圆锥的体积。
2.探索并掌握圆柱的侧面积、表面积的计算方法,以及圆柱、圆锥体积的计算公式,会运用公式计算体积,解决有关的简单实际问题。
3.通过观察、设计和制作圆柱、圆锥模型等活动,了解平面图形与立体图形之间的联系,发展学生的空间观念。
正方形的面积为边长的平方,周长为4*边长
长方形的面积为长乘宽,周长为2*(长+宽)
平行四边形的面积为长乘高,周长为2×临边的和
梯形的面积为(上底+下底)乘高÷2,周长为各边之和
三角形的面积为底乘高除以2,周长为各边之和
圆柱的面积为侧面积加上底面两圆面积之和,等于底面周长乘以高加2πr^2
圆锥的面积为扇形面积加底面积,等于底面周长乘以母线长除以2,或nπR^2除以360
体积和表面积
三角形的面积=底×高÷2。 公式 S= a×h÷2
正方形的面积=边长×边长 公式 S= a2
长方形的面积=长×宽 公式 S= a×b
平行四边形的面积=底×高 公式 S= a×h
梯形的面积=(上底+下底)×高÷2 公式 S=(a+b)h÷2
内角和:三角形的内角和=180度。
长方体的表面积=(长×宽+长×高+宽×高 ) ×2 公式:S=(a×b+a×c+b×c)×2
正方体的表面积=棱长×棱长×6 公式: S=6a2
长方体的体积=长×宽×高 公式:V = abh
长方体(或正方体)的体积=底面积×高 公式:V = abh
正方体的体积=棱长×棱长×棱长 公式:V = a3
圆的周长=直径×π 公式:L=πd=2πr
圆的面积=半径×半径×π 公式:S=πr2
圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。公式:S=ch=πdh=2πrh
圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。 公式:S=ch+2s=ch+2πr2
圆柱的体积:圆柱的体积等于底面积乘高。公式:V=Sh
圆锥的体积=1/3底面×积高。公式:V=1/3Sh
算术
1、加法交换律:两数相加交换加数的位置,和不变。
2、加法结合律:a + b = b + a
3、乘法交换律:a × b = b × a
4、乘法结合律:a × b × c = a ×(b × c)
5、乘法分配律:a × b + a × c = a × b + c
6、除法的性质:a ÷ b ÷ c = a ÷(b × c)
7、除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。 O除以任何不是O的数都得O。 简便乘法:被乘数、乘数末尾有O的乘法,可以先把O前面的相乘,零不参加运算,有几个零都落下,添在积的末尾。
8、有余数的除法: 被除数=商×除数+余数
方程、代数与等式
等式:等号左边的数值与等号右边的数值相等的式子叫做等式。 等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。
方程式:含有未知数的等式叫方程式。
一元一次方程式:含有一个未知数,并且未知数的次 数是一次的等式叫做一元一次方程式。学会一元一次方程式的例法及计算。即例出代有χ的算式并计算。
代数: 代数就是用字母代替数。
代数式:用字母表示的式子叫做代数式。如:3x =ab+c
分数
分数:把单位“1”平均分成若干份,表示这样的一份或几分的数,叫做分数。
分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。
分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。
分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。
分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。
分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。
倒数的概念:1.如果两个数乘积是1,我们称一个是另一个的倒数。这两个数互为倒数。1的倒数是1,0没有倒数。
分数除以整数(0除外),等于分数乘以这个整数的倒数。
分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小
分数的除法则:除以一个数(0除外),等于乘这个数的倒数。
真分数:分子比分母小的分数叫做真分数。
假分数:分子比分母大或者分子和分母相等的分数叫做假分数。假分数大于或等于1。
带分数:把假分数写成整数和真分数的形式,叫做带分数。
分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小不变。
数量关系计算公式
单价×数量=总价 2、单产量×数量=总产量
速度×时间=路程 4、工效×时间=工作总量
加数+加数=和 一个加数=和+另一个加数
被减数-减数=差 减数=被减数-差 被减数=减数+差
因数×因数=积 一个因数=积÷另一个因数
被除数÷除数=商 除数=被除数÷商 被除数=商×除数
长度单位:
1公里=1千米 1千米=1000米
1米=10分米 1分米=10厘米 1厘米=10毫米
面积单位:
1平方千米=100公顷 1公顷=10000平方米
1平方米=100平方分米 1平方分米=100平方厘米 1平方厘米=100平方毫米
1亩=666.666平方米。
体积单位
1立方米=1000立方分米 1立方分米=1000立方厘米
1立方厘米=1000立方毫米
1升=1立方分米=1000毫升 1毫升=1立方厘米
重量单位
1吨=1000千克 1千克= 1000克= 1公斤= 1市斤
比
什么叫比:两个数相除就叫做两个数的比。如:2÷5或3:6或1/3 比的前项和后项同时乘以或除以一个相同的数(0除外),比值不变。
什么叫比例:表示两个比相等的式子叫做比例。如3:6=9:18
比例的基本性质:在比例里,两外项之积等于两内项之积。
解比例:求比例中的未知项,叫做解比例。如3:χ=9:18
正比例:两种相关联的量,一种量变化,另一种量也随着化,如果这两种量中相对应的的比值(也就是商k)一定,这两种量就叫做成正比例的量,它们的关系就叫做正比例关系。如:y/x=k( k一定)或kx=y
反比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系就叫做反比例关系。 如:x×y = k( k一定)或k / x = y
百分数
百分数:表示一个数是另一个数的百分之几的数,叫做百分数。百分数也叫做百分率或百分比。
把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号。其实,把小数化成百分数,只要把这个小数乘以100%就行了。把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。
把分数化成百分数,通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。其实,把分数化成百分数,要先把分数化成小数后,再乘以100%就行了。
把百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数。
要学会把小数化成分数和把分数化成小数的化发。
倍数与约数
最大公约数:几个数公有的约数,叫做这几个数的公约数。公因数有有限个。其中最大的一个叫做这几个数的最大公约数。
最小公倍数:几个数公有的倍数,叫做这几个数的公倍数。公倍数有无限个。其中最小的一个叫做这几个数的最小公倍数。
互质数: 公约数只有1的两个数,叫做互质数。相临的两个数一定互质。两个连续奇数一定互质。1和任何数互质。
通分:把异分母分数的分别化成和原来分数相等的同分母的分数,叫做通分。(通分用最小公倍数)
约分:把一个分数的分子、分母同时除以公约数,分数值不变,这个过程叫约分。
最简分数:分子、分母是互质数的分数,叫做最简分数。分数计算到最后,得数必须化成最简分数。
质数(素数):一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数)。
合数:一个数,如果除了1和它本身还有别的约数,这样的数叫做合数。1不是质数,也不是合数。
质因数:如果一个质数是某个数的因数,那么这个质数就是这个数的质因数。
分解质因数:把一个合数用质因数相成的方式表示出来叫做分解质因数。
倍数特征:
2的倍数的特征:各位是0,2,4,6,8。
3(或9)的倍数的特征:各个数位上的数之和是3(或9)的倍数。
5的倍数的特征:各位是0,5。
4(或25)的倍数的特征:末2位是4(或25)的倍数。
8(或125)的倍数的特征:末3位是8(或125)的倍数。
7(11或13)的倍数的特征:末3位与其余各位之差(大-小)是7(11或13)的倍数。
17(或59)的倍数的特征:末3位与其余各位3倍之差(大-小)是17(或59)的倍数。
19(或53)的倍数的特征:末3位与其余各位7倍之差(大-小)是19(或53)的倍数。
23(或29)的倍数的特征:末4位与其余各位5倍之差(大-小)是23(或29)的倍数。
倍数关系的两个数,最大公约数为较小数,最小公倍数为较大数。
互质关系的两个数,最大公约数为1,最小公倍数为乘积。
两个数分别除以他们的最大公约数,所得商互质。
两个数的与最小公倍数的乘积等于这两个数的乘积。
两个数的公约数一定是这两个数最大公约数的约数。
1既不是质数也不是合数。
用6去除大于3的质数,结果一定是1或5。
小学一至六年级数学公式大全
周长公式
类型公式字母表示
长方形(长+宽)*2 (a+b)×2
正方形边长×4 a×4
圆直径×π或
2×π×半径π×d或
2×π×r
面积公式
类型公式字母表示
长方形长×宽 a×b
正方瞎蠢陪形边长×边长 a×a
平行四边形底×高 a×h
梯形(上底+下底)×高÷2 (a+b)×h÷2
三角形底×高÷2 a×h÷2
长方体表面积(长×宽+长×高+宽×高)×2 (a×b+a×h+b×h)×2
正方体表面积棱长×棱长×6 a×a×6
圆面积π×半径的平方r2
圆柱体侧面积底面周长×高
π×直径×高
2×π×半径×高 c×h
π×d×h
2×π×r×h
圆柱体表面积侧面积+2×底面积
底面周长×高+2×π×半径的平方
π×直径×高+2×π×半径的平方
2×π×半径×高档饥+2×π×半径的平方
c×h+2×r2
π×d×h+2×r2
2×π×r×h +2×r2
体积公式
类型公式字母表示
长方形长×宽×高 a×b×h
正方体棱长×棱长×棱长 a×a×a
圆柱体底面积×高
π×半径的平方×高 s×h
r2×h
圆锥体×底面积×高
×π×半径的平方×高×s×h
×r2×h
补充说明:
长方体棱长和=(长+宽+高)×4
正方体棱长和=棱长×12
熟记下列正反比例关系:
正比例关系:
正方形的周长与边长成正比例关系
长方形的周长与(长+宽)成正比例关系
圆的周长与直径成正比例关系
圆的周长与半径成正比例关系
圆的面积与半径的平方成正比例关系
2.反比例关系
常用数量关系:
1.路程=速度×时间速度=路程÷时间时间=路程÷速度
工作总量=工作效率×工作时间工作效率=工作总量÷工作时间工作时间=工作总量÷工作效率
总价=单价×数量单价=总价÷数量数量=总价÷单价
总产量=单产量×面积单产量=总产量÷面积面积=总产量÷单产量
单位换算:
长度单位:
一公里=1千米=1000米1米=10分米 1分米=10厘米1厘米=10毫米
面积单位:
1平方千米=100公顷1公顷=100公亩1公亩=100平方米
1平方千米=1000000平方米1公顷=10000平方米1平方米=100平方分米
1平方分米=100平方厘米1平方厘米=100平方毫米
体积单位:
1立方千米=1000000000立方米1立方米=1000立方分米 1立方分米=1000立方厘米
1立方厘米=1000立方毫米1立方分米=1升1立方厘米=1毫升1升=1000毫升
重量单位:
1吨=1000千克1千克=1000克
时间单位:
一世纪=100年 一年=四季度一年=12月一年=365天(平年)一年=366天(闰年)
一季度=3个月 一个月= 3旬(上、中、下)一个月=30天(小月)一个月=31天(大月)
一星期=7天
一天=24小时
一小时=60分
一分磨蠢=60秒
一年中的大月:一月、三月、五月、七月、八月、十月、十二月(七个月)
一年中的小月:四月、六月、九月、十一月(四个月)
特殊分数值:
=0.5=50%= 0.25 = 25%= 0.75 = 75%
= 0.2 = 20%= 0.4 = 40%= 0.6 = 60%= 0.8 = 80%
=0.125=12.5%= 0.375 = 37.5%= 0.625 = 62.5%= 0.875 = 8
一.用字母表示运算定律或性质
加法交换律: a+b=b+a 加法结合律: (a+b)+c=a+(b+c)
乘法交换律: ab=ba 乘法结合律:(ab)c=a(bc) 乘法分配律:a(b+c)=ab+ac
二.几何图形计算公式
(1)周长:即围绕物体一周的长度。
①长方形周长=(长+宽)×2 C=(a+b)×2 ②正方形周长=边长×4 C=4a
③圆的周长=圆周率×直径 =圆周率×半径×2 C=πd C =2πr
(2)面积:即物体的表面或封闭图形的大小
①长方形的面积=长×宽 S=ab ②正方形的面积=边长×边长 S=a•a=a2
③平行四边形的面积=底×高 S=ah ④三角形的面积=底×高÷2 S=ah÷2
⑤梯形的面积=(上底+下底)×高÷2 S=(a+b)h÷2 ⑥圆的面积=圆周率×半径S=πr2
⑦直径d=2r 半径=直径÷2 r= d÷2 ⑧环形面积=外圆面积-内圆面积S环=S外-S内
【相互联系】 平面图形的面积公式是以长方形面积计算公式为基础的。如两个完全相同的三角形、梯形可拼成一个平行四边形。圆拼成长方形的长时1/2C,宽是R.
(3)表面积:立体图形的所有面的面积之和叫做它的表面积
①长方体的表面积=(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh)
②正方体的表面积=棱长×棱长×6 S=a×a×6 =6a2
③圆柱体的侧面积=底面周长×高 S=Ch =2πrh
④圆柱体的表面积=侧面积+底面积×2 S= Ch+2πr2 = 2πrh+2πr2
注意:圆柱的底面周长与高相等时侧面展开是正方形,C=h 2πr=h
(4)体积:物体所占空间的大小叫体积
①长方体的体积=长×宽×高 V=abh ②正方体的体积=棱长×棱长×棱长 V=a×a×a=a3
③圆柱的体积=底面积×高V=sh=πr2h ④圆锥的体积=底面积×高÷3 V=1/3sh= 1/3πr2h
【相互联系】长方体、正方体和圆柱体的体积公式可统一成:V=sh即底面积×高.。
等体积等底的长、正、圆柱体和圆锥体,圆锥高是长方体、正方体、圆柱体高的3倍。
三.数量关系式
1每份数×份数=总数 总数÷每份数=份数 总数÷份数=每份数
2 单价×数量=总价 总价÷单价=数量 总价÷数量=单价
3 速度×时间=路程 路程÷速度=时间 路程÷时间=速度
4 工效×工时=工作总量 工作总量÷工效=工时 工作总量÷工时=工效
5、 加数+加数=和 和-一个加数=另一个加数
6、 被减数-减数=差 被减数-差=减数 差+减数=被减数
7、 因数×因数=积 积÷一个因数=另一个因数
8、 被除数÷除数=商 被除数÷商=除数 商×除数=被除数 被除数=除数×商+余数
注意:0.3÷0.2=1余0.1 除数与被除数同时扩大100倍,商不变,余数也扩大100倍。
9 平均数=总数÷总份数 平均速度=总路程÷总时间
10.相遇问题 相遇路程=速度和×相遇时间 相遇时间=相遇路程÷速度和
速度和=相遇路程÷相遇时间 一个人的速度=相遇路程÷相遇时间-另一个人的速度
11.平均速度问题 平均速度=总路程÷(顺流时间+逆流时间)注意: 折(往)返=路程×2
12.浓度问题: 溶质(药)+溶剂(水)=溶液(药水) 溶质(药)÷溶液(药水)=浓度
溶液(药水)×浓度=溶质(药) 溶质(药)÷浓度=溶液(药水)
13.折扣问题: 折扣=现价÷原价 (折扣<1) 现价=原价×折扣 原价=现价÷折扣
利息=本金×年利率×时间(年) =本金×月利率×时间(月)
14比例尺=图上距离÷实际距离 实际距离=图上距离÷比例尺 图上距离=实际距离×比例尺
税后利息=本金×利率×时间×(1-5%)
15追及问题 追及距离=速度差×追及时间 追及时间=追及距离÷速度差
速度差=追及距离÷追及时间
易错枣饥题:1、周长和面积不相等。 2、圆的面积与半径不成比例。 3、增加和扩大、缩小与减少的区别 4、地砖块数与面积的计算。 5、时间的进率60,平方米与公顷的进率是10000 6、一种立体图形转化为另一种立体图形,体积不变。 7、填空、应用题要注意单位的统一(易错)衡岩纤;要求保留时,无要求用什么法,要结合实际用“四舍五入”还是“进一法”。 8、计算表面积时结合实际求哪些面。 9、 车轮、压咐仿路机前进的距离就是周长×转数。 10、数的改写用小数点表示,再添单位;精确到(保留时)看下一位并用“四舍五入”法表示,再添单位。 11、等底等高的三角形是平行四边形面积的一半;等底等高的圆柱体积是圆锥的3倍。 12、路程一定,速度和时间成反比。如A、B同走一段路时间比是5:4,A、B的速度比是4:5。(工作总量类似)。 13、看到高和垂线想到直角(符号)。 14、两点之间直线最短,点线之间垂线段最短;绕一点旋转就是以这点为顶点,作与这个点相关的两条边的垂线,定出另两个点。旋转时逆时针是向左。 15、确定方向要注意观测点。 16、计算时要留意跟整数相差一点的数.如9.9 ;10.1。 17、应用题分析时注意抓共同量或不变量分析。如实际与计划中的总量,男生转入人数时的女生人数;同一面积中换不同边长的地砖。 18、两个圆的面积比是半径比的平方倍;图形面积扩大的倍数是边长扩大的平方倍。