当前位置: 首页 > 所有学科 > 数学

数学八下思维导图,八下数学第三章思维导图

  • 数学
  • 2023-07-31

数学八下思维导图?八年级下的数学思维导图汇总 八年级数学下册《反比例函数》知识点整理 1.定义:形如y= (k为常数,k≠0)的函数称为反比例函数。2.其他形式 xy=k (k为常数,k≠0)都是。那么,数学八下思维导图?一起来了解一下吧。

八年级下册数学思维导图简单

思维导图是-种有效的思维,它能帮助学习者进行发散思维和记忆,帮助我们学会数学。下面我精心整理了初二数学全等三角形思维导图,供大家参考,希望你们喜欢!

初二数学全等三角形思维导图汇总

初二数学全等三角形的性质

1.全等三角形的对应角相等。

2.全等三角形的对应边相等。

3. 能够完全重合的顶点叫对应顶点。

4.全等三角形的对应边上的高对应相等。

5.全等三角形的对应角的角平分线相等。

6.全等三角形的对应边上的中线相等。

7.全等三角形面积和周长相等。

8.全等三角形的对应角的三角函数值相等。[1]

判定过程:

在第一行写要进行判定全等的两个三角形;

第二行画大括号,分别写判定的三个条件,并注明理由;

在第三行写出结论,并说明理由。

塌唤五种理由:

1.公共边;2.已知;3.已证;4.公共角;5.由定义推到的角,如"对顶角相等"。

最后一行,写两个三角形全等并注明理由.(如图)

四种理由

四种理由

(若为直角三角形,在第二行须先写明两个直角相等并为90度,再写两个斜团携凯边、直角边分别相等)。

(例:Rt△xxx与Rt△xxx)

(提示:线段的垂直平分线上的一点到线段的两个端点的距离相等)

温馨提示:

三个角对应相等的两个三角形不一定全等,两边和其中一边的对角对应相等的两个三角形也不一定全等。

数学八下思维导图一次函数

初中数学是从事现代化建设和进一步学习现代化科学技术所必需的数学基本知识和基本技能,通过学习数学培养运算能力、逻辑思维能力,以及分析问题和解决问题的能力。八年级数学是初中学习过程中的关键时期,学生基础的好坏,直接影响到将来是否能升学。为了帮助大家更好的理解八年级数学,我把它归结为几张图。

勾股定理是平面几何有关度量的最基本定理,他从边的角度进一度刻画了直角三角形的特征。勾股定理作为“千古第一定理”,其魅力在于其所具有的历史价值和应含雹用价值,因此,应注意充分挖掘其内涵。用数格子(或割、补、拼等)的方法体验勾股定理的探索过程,理解勾股定理反映的直角三角形三边之间的数量关系,会初步运用勾股定理进行简单的计算和实际运用。

从平方根于立方根说起,学习有关实数的有关知识,并以这些知识解决一些实际问题。熟记有关概念:无理数、算术平方根、平方根、立方根、实数以及实数分类,区别平方根、算术平方根、立方根,会求一个数的平方根、算术平方根、立方根,熟练实数的运算和化简。

“图形与坐标”是“图形与几何”领域的重要组成部分,他是发展学生空间观念的重要载体。知道在平面内确定一雹乱个物体的位置至少需要两个数据,会用两个量表示平面内一个点的位置。

数学书上最恐怖一页

数学思维导图可以帮助我们提高复习效率。下面我精心整理了八年级数学的思维导图,供大家参考,希望你们喜欢!

八年级数学的思维导图:全等三角形

八年级数学的思维导图:二次根式

八年级数学的思维导图:实数

八年级数学的思维导图:相似图形

八年级数学的思维导图因式分解

1. 因式分把一个多项式化为几个整式的积的形式,叫做把这个多项式因式分解;注意:因式分解与乘法是相反的两个转化.

2.因式分解的方法:常用“提取公因式法”、“公式法”、“分组分解法”、“十字相乘法”.

3.公因式的确定:系数的最大公约数?相同因式的最低次幂.

注意公式:a+b=b+a; a-b=-(b-a); (a-b)2=(b-a)2; (a-b)3=-(b-a)3.

4.因式分解的公式:

(1)平方差公式: a2-b2=(a+ b)(a- b);

(2)完全平方公式: a2+2ab+b2=(a+b)2, a2-2ab+b2=(a-b)2.

5.因式分解的注意事项:

(1)选择因式分解方法的一般次序是:一 提取、二 公式、三 分组、四 十字;

(2)使用因式分解公式时要特别注意公式中的字母都具有整体性中缓轮;

(3)因式分解的最后结果要求分解到每一个因式都不能分解为止;

(4)因式分解的最后结果要求每一个因式的首项符号为正;

(5)因式分解的最后结果要求加以整理;

(6)因式分解的最后结果要求相同因式写成乘方的形式.

6.因式分解的解题技巧:(1)换位整理,加括号或去括号整理;(2)提负号;(3)全变号;(4)换元;(5)配方;(6)把相同的式子看作整体;(7)灵活分组;(8)提取分数系数;(9)展开部分括号或全部括号;(10)拆项或补项.

7.完全平方式:能化为(m+n)2的多项式叫完全平方式;对于二次三项式x2+px+q, 有“ x2+px+q是完全平方式 ? ”.

分式

1.分式:一般地,用A、B表示两个整式,A÷B就可以表示为 的形式,如果B中含有字母,式子 叫做分式.

2.有理式:整式与分式统称有理式;即 .

3.对于分式的两个重要判断:(1)若分式的分母为零,则分式无意义,反之有意义;(2)若分式的分子为零,而分母不为零,则分式的值为零;注意:若分式的分子为零,而分母也为零,则分式无意义.

4.分式的基本性质与应用:

(1)若分式的分子与分母都乘以(或除以)同一个不为零的整式,分式的值不变;

(2)注意:在分式中,分子、分母、分式本身的符号,改变其中任何两个,分式的值不变;

(3)繁分式化简时,采用分子分母同乘小分母的最小公倍数的方法,比较简单.

5.分式的约分:把一个分式的分子与分母的公因式约去,叫做分式的约分;注意:分式约分前经常需要先因式分解.

6.最简分式:一个分式的分子与分母没有公因式,这个分式叫做最简分式;注意:分式计算的最后结果要求化为最简分式.

7.分式的乘除法法则: .

8.分式的乘卖信方: .

9.负整指数计算法则:

(1)公式哪销: a0=1(a≠0), a-n= (a≠0);

(2)正整指数的运算法则都可用于负整指数计算;

(3)公式: , ;

(4)公式: (-1)-2=1, (-1)-3=-1.


八下平行四边形思维导图

数学思维导图便是一种很好的教学方法,能促进建构性学习和知识整合,从而提高学习效率。今天我为大家带来了八年级下的数学思维导图,一起来看看吧!

八年级下的数学思维导图汇总

八年级数学下册《反比例函数》知识点整理

1.定义:形如y= (k为常数,k≠0)的函数称为反比例函销丛数。

2.其他形式 xy=k (k为常数,k≠0)都是。

3.图像:反比例函数的图像属于双曲线。

反比例函数的图亏孝樱象既是轴对称图形又是中心对称图形。

有两条慎清对称轴:直线y=x和 y=-x。 对称中心是:原点

3.性质:当k>0时双曲线的两支分别位于第一、第三象限,在每个象限内y值随x值的增大而减小。

当k<0时双曲线的两支分别位于第二、第四象限,在每个象限内y值随x值的增大而增大。

4.|k|的几何意义:表示反比例函数图像上的点向两坐标轴

所作的垂线段与两坐标轴围成的矩形的面积。

八年级数学下册勾股定理知识点总结

1.勾股定理:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a2+b2=c2。

2.勾股定理逆定理:如果三角形三边长a,b,c满足a2+b2=c2。,那么这个三角形是直角三角形。

3.经过证明被确认正确的命题叫做定理。

初二数学18章思维导图

学生数学思维能力的培养可以同过让学生制作思维导图。下面我精心整理了初二的数学思维导图欣赏,供大家参考,希望你们喜欢!

初二的数学思维导图

北师大版初二数学知识点:勾股定理

1、勾股定理

直角三角形两直角边a,b的平方和等于斜边c的平方,即a2+b2=c2。

2、勾股定理的逆定理

如果三角形的三边长a,b,c有这种关系,那么这个三角形是直角三角形。

3、勾股数

满足的三个正整数,称为蚂简勾股数。

常见的勾股数组有:(3,4,5);(5,12,13);(8,15,17);(7,24,25);(20,21,29);(9,40,41);……(这些勾股数组的倍数仍是勾股数)

人教版初二数学知识点:三角形

1.三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形.

2.三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边.

3.高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高.

4.中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线.

5.角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.

6.三角形的稳定性:三角形的形状是固裤郑定的,三角形的这个性质叫三角形的稳定性.

7.多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形.

8.多边形的内角:多边形相邻两边组成的角叫做它的内角.

9.多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角.

10.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对 角线.

11.正多边形:在平面内,各个角都相等,各条边都相等的多边形叫正多边形.

12.平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用 多边形覆盖平面,

13.公式与闷纯裤性质:

⑴三角形的内角和:三角形的内角和为180°

⑵三角形外角的性质:

性质1:三角形的一个外角等于和它不相邻的两个内角的和.

性质2:三角形的一个外角大于任何一个和它不相邻的内角.

⑶多边形内角和公式:边形的内角和等于·180°

⑷多边形的外角和:多边形的外角和为360°.

⑸多边形对角线的条数:①从边形的一个顶点出发可以引条对角 线,把多边形分成个三角形.②边形共有条对角线.


以上就是数学八下思维导图的全部内容,1、第一步就是梳理好数学知识,在纸上或者脑子里构建出思维导图中用到的内容。然后,进入到在线网站。2、参照纸上或者脑子里构建的图,进行编辑,画出来中心点和支点。3、填充内容,在中心点填写思维导图的主题。

猜你喜欢