2017新课标1数学答案?1.不等式 的解集为 ▲ .2.直线 : 的倾斜角为 ▲ .3.在相距 千米的 两点处测量目标 ,若 , ,则 两点之间的距离是 ▲ 千米(结果保留根号).4.圆 和圆 的位置关系是 ▲ .5.等比数列 的公比为正数,已知 ,那么,2017新课标1数学答案?一起来了解一下吧。
1、2016年高考四川省文综将使用纤山新课标二卷。2、四川省高考使用全国卷实御竖胡行分步推进,平稳过渡。2016年镇拦使用全国卷的科目是语文、文科综合(政治、历史、地理),以及外语科小语种(含听力);2016年使用四川卷的科目是数学(文、理)、理科综合(物理、化学、生物)、英语科(含听力,听力考试使用全国统一命制的试题)。各学科考试要求以2016年普通高等学校招生全国统一考试大纲(课程标准实验版),以及国家和四川省相应的考试说明为依据。从2017年起,四川省普通高考各科全部使用全国卷。
我前面有4只,后面也有4只,一共有多少只动物,答案无法确定。
这个问题的答案并不是简单的8,因为宴带没有考虑到提问者本身也是一只动物。如果提问者是站在一个队列中,前面有4只动物,后面也有4只动物,那么队列中总的动物数量应该是4(前面的动物)+1(提问者自己)+4(后面的动物)=9只。
如果提问者是在一个圆圈中,前面有4只动物,后面也有4只动物,那么圆圈中总的动物数量应该是4(前面的动物)+1(提问者自己)+4(后面的动物)=9只。
但是,如果提问者是在一个更大的环境中,前面有拆答4只动物,后面也有4只动物,那么总的动物数量就无法确定了,因为不知道这个环境的范围和其他动物的分布情况。所以,这个问题的答案取决于具体的情境和条件。
学好数学的好处:
1、数学是一门基础学科,它为旅祥慧我们提供了理解世界的基本。通过学习数学,我们可以更好地理解自然规律和社会现象,从而做出更加明智的决策。例如,在物理学中,数学被广泛应用于描述和预测物理现象;在经济学中,数学被用来分析和预测市场趋势。
2、数学是一门具有实用价值的学科。许多职业都需要具备一定的数学能力,例如工程师、科学家、金融从业人员等。
一、选择题
1.已知函数f(x)=2x3-x2+m的图象上A点处的切线与直线x-y+3=0的夹角为45°,则A点的横坐标为()
A.0 B.1 C.0或 D.1或
答案:C命题立意:本题考查导数的应用,难度中等.
解题思路:直线x-y+3=0的倾斜角为45°,
切线的倾斜角为0°或90°,由f′(x)=6x2-x=0可得x=0或x=,故选C.
易错点拨:常见函数的切线的斜率都是存在的,所以倾斜角不会是90°.
2.设函数f(x)=则满足f(x)≤2的x的取值范围是()
A.[-1,2] B.[0,2]
C.[1,+∞) D.[0,+∞)
答案:D命题立意:本题考查分段函数的相关知识,求解时可分为x≤1和x>1两种情况进行求解,再对所求结果求并集即得最终结果.
解题思路:若x≤1,则21-x≤2,解得0≤x≤1;若x>1,则1-log2 x≤2,解得x>1,综上可知,x≥0.故选D.
3.函数y=x-2sin x,x的大致图象是()
答案:D解析思路:因为函数为奇函数,所以图象关于原点对称,排除A,B.函数的导数为f′(x)=1-2cos x,由f′(x)=1-2cos x=0,得cos x=,所以x=.当00,函数单调递增,所以当x=时,函数取得极小值.故选D.
4.已知函数f(x)满足竖宏:当x≥4时,f(x)=2x;当x<4时,f(x)=f(x+1),则f=()
A. B. C.12 D.24
答案:D命题立意:本题考查指数式的运算,难度中等.
解题思路:利用指数式的运算法则求解.因为2+log =2+log2 3(3,4),所以f=f=f(3+log2 3)=23+log2 3=8×3=24.
5.已知函数f(x)=若关于x的方程f2(x)-af(x)=0恰好有5个不同的实数解,则a的取值范围是()
A.(0,1) B.(0,2) C.(1,2) D.(0,3)
答案:
A解题思路:设t=f(x),则方程为t2-at=0,解得t=0或t=a,
即f(x)=0或衡伍f(x)=a.
如图,作出函数的图象,
由函数图象可知,f(x)=0的解有两个,
故要使方程f2(x)-af(x)=0恰有5个不同的解,则方程f(x)=a的解必有三个,此时0
6.若R上的奇函数y=f(x)的图象关于直线x=1对称,且当0
A.4 020 B.4 022 C.4 024 D.4 026
答案:B命题立意:本题考查函数性质的应用及数形结合思想,考查推理与转化能力,难度中等.
解题思路:由于函数图象关于直线x=1对称,故有f(-x)=f(2+x),又函数为奇函数,故-f(x)=f(2+x),从而得-f(x+2)=f(x+4)=f(x),即函数以4为周期,据题意其在一个周期内的图象如图所示.
又函数为定义在R上的奇函数,故f(0)=0,因此f(x)=+f(0)=,因此在区间(2 010,2 012)内的函数图象可由区间(-2,0)内的图象向右平移2 012个单位得到,此时两根关于直线x=2 011对称,故x1+x2=4 022.
7.已知函数满足f(x)=2f,当x[1,3]时,f(x)=ln x,若在区间内,函数g(x)=f(x)-ax有三个不同零点,则实数a的取值范围是()
A. B.
C. D.
答案:A思路点拨:当x∈时,则1<≤3,
f(x)=2f=2ln=-2ln x.
f(x)=
g(x)=f(x)-ax在区间内有三个不同零点,即函数y=与y=a的图象在上有三个不同的交点.
当x∈时,y=-,
y′=<0,
y=-在上递减,
y∈(0,6ln 3).
当x[1,3]时,y=,
y′=,
y=在[1,e]上递增,在[e,3]上递减.
结合图象,所以y=与y=a的图象有三个交点时,a的取值范围为.
8.若函数f(x)=loga有最小值,则实数a的取值余拦册范围是()
A.(0,1) B.(0,1)(1,)
C.(1,) D.[,+∞)
答案:C解题思路:设t=x2-ax+,由二次函数的性质可知,t有最小值t=-a×+=-,根据题意,f(x)有最小值,故必有解得1
9.已知函数f(x)=若函数g(x)=f(x)-m有三个不同的零点,则实数m的取值范围为()
A. B.
C. D.
答案:
C命题立意:本题考查函数与方程以及数形结合思想的应用,难度中等.
解题思路:由g(x)=f(x)-m=0得f(x)=m,作出函数y=f(x)的图象,当x>0时,f(x)=x2-x=2-≥-,所以要使函数g(x)=f(x)-m有三个不同的零点,只需直线y=m与函数y=f(x)的图象有三个交点即可,如图.只需-
10.在实数集R中定义一种运算“*”,对任意给定的a,bR,a*b为确定的实数,且具有性质:
(1)对任意a,bR,a*b=b*a;
(2)对任意aR,a*0=a;
(3)对任意a,bR,(a*b)*c=c*(ab)+(a*c)+(c*b)-2c.
关于函数f(x)=(3x)*的性质,有如下说法:函数f(x)的最小值为3;函数f(x)为奇函数;函数f(x)的单调递增区间为,.其中所有正确说法的个数为()
A.0 B.1 C.2 D.3
答案:B解题思路:f(x)=f(x)*0=*0=0]3x×+[(3x)*0]+)-2×0=3x×+3x+=3x++1.
当x=-1时,f(x)0,得x>或x<-,因此函数f(x)的单调递增区间为,,即正确.
二、填空题
11.已知f(x)=若f[f(0)]=4a,则实数a=________.
答案:2命题立意:本题考查了分段函数及复合函数的相关知识,对复合函数求解时,要从内到外逐步运算求解.
解题思路:因为f(0)=2,f(2)=4+2a,所以4+2a=4a,解得a=2.
12.设f(x)是定义在R上的奇函数,在(-∞,0)上有2xf′(2x)+f(2x)<0且f(-2)=0,则不等式xf(2x)<0的解集为________.
答案:(-1,0)(0,1)命题立意:本题考查函数的奇偶性与单调性的应用,难度中等.
解题思路:[xf(2x)]′=2xf′(2x)+f(2x)<0,故函数F(x)=xf(2x)在区间(-∞,0)上为减函数,又由f(x)为奇函数可得F(x)=xf(2x)为偶函数,且F(-1)=F(1)=0,故xf(2x)<0F(x)<0,当x0时,不等式解集为(0,1),故原不等式解集为(-1,0)(0,1).
13.函数f(x)=|x-1|+2cos πx(-2≤x≤4)的所有零点之和为________.
答案:6命题立意:本题考查数形结合及函数与方程思想的应用,充分利用已知函数的对称性是解答本题的关键,难度中等.
解题思路:由于函数f(x)=|x-1|+2cos πx的零点等价于函数g(x)=-|x-1|,h(x)=2cos πx的图象在区间[-2,4]内交点的横坐标.由于两函数图象均关于直线x=1对称,且函数h(x)=2cos πx的周期为2,结合图象可知两函数图象在一个周期内有2个交点且关于直线x=1对称,故其在三个周期[-2,4]内所有零点之和为3×2=6.
14.已知函数f(x)=ln ,若f(a)+f(b)=0,且0
答案:命题立意:本题主要考查对数函数的运算,函数的值域,考查运算求解能力,难度中等.
解题思路:由题意可知,ln +ln =0,
即ln=0,从而×=1,
化简得a+b=1,
故ab=a(1-a)=-a2+a=-2+,
又0
故0<-2+<.
B组
一、选择题
1.已知偶函数f(x)在区间[0,+∞)单调递减,则满足不等式f(2x-1)>f成立的x取值范围是()
A. B.
C. D.
答案:B解析思路:因为偶函数的图象关于y轴对称,在区间[0,+∞)单调递减,所以f(x)在(-∞,0]上单调递增,若f(2x-1)>f,则-<2x-1<,
2017年高考理科数学轿碰巧全国卷1试题内
容及参考答案,适用地区:河南、河北、山吵禅西、江西、湖北闭键、湖南、广东、安徽、福建
一、选择题
(一)、单项选择
1、算法多样化属于学生群体,(2)每名学生把各种算法都学会。【①要求 ②不要求】
2、新课程的核心理念是(3)
①联系生活学数学 ②培养学习数学的爱好 ③一切为了每一位学生的袜肆肆发展
3、根据《数学课程标准》的理念,解决问题的教学要贯穿于数学课程的全部内容中,不再单独出现(3)的教学。【①概念 ②计算 ③应用题】
4、建立成长记录是学生开展(3)的一个重要方式,它能够反映出学生发展与进步的历程。
【①自我评价 ②相互评价 ③多告轿样评价】
5、“用数学”的含义是(2)【①用数学学习 ②用所学数学知识解决问题 ③了解生活数学】
6、下列现象中,(D)是确定的。
A、后天下雪 B、明天有人走路 C、天天都有人出生 D、地球天天都在转动
雹仔7、《标准》安排了(B)个学习领域。 A)三个 B)四个 C)五个 D)不确定
8、教师由“教书匠”转变为“教育家”的主要条件是(D)
A、坚持学习课程理论和教学理论 B、认真备课,认真上课
C、经常撰写教育教学论文 D、以研究者的眼光审阅和分析教学理论与教学实践中的各种问题,对自身的行为进行反思、新课程标准通盘考虑了九年的课程内容,将义务教育阶段的数学课程分为(B)个阶段。
以上就是2017新课标1数学答案的全部内容,答案不能答在试卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。