当前位置: 首页 > 所有学科 > 数学

九年级数学卷子,初三数学试卷和答案真题免费

  • 数学
  • 2023-12-06

九年级数学卷子?②以AB为直径作圆,试判断直线CM与此圆的位置关系,并说明理由. 九年级数学上册期末试题答案 阅卷须知: 1.为便于阅卷,本试卷答案中有关解答题的推导步骤写得较为详细,阅卷时,只要考生将主要过程正确写出即可。那么,九年级数学卷子?一起来了解一下吧。

初三数学试卷题目及答案

九年级数学期末考试之前,做好每一份数学试卷的习题,会让你在数学考场中如鱼得水。

苏科版九年级上册数学期末试题

一、填空题(每题2分,共24分.)

1.当x 时, 有意义.

2.计算: .

3.若x=1是关于方程x2-5x+c=0的一个根,则该方程的另一根是 .

4.抛物线 的顶点坐标是 .

5.如图,在□ABCD中,AC、BD相交于点O,点E是AB的中点,OE=3cm,则AD的长是 cm.

(第5题图) (第8题图) (第10题图)

6.等腰梯形的上底是4cm,下底是10cm,一个底角是60,则等腰梯形的腰长是 cm.

7.已知一个等腰三角形的两边长是方程x2-6x+8=0的两根,则该三角形的周长是 .

8.一条排水管的截面如图所示.已知排水管的截面圆半径OB=10,截面圆圆心O到水面的距离OC是6,则水面宽AB是 .

9.如果圆锥的底面周长是20π,侧面展开后所得的扇形的圆心角为120,则圆锥的母线长是 .

10.如图,PA、PB是⊙O是切线,A、B为切点, AC是⊙O的直径,若∠BAC=25,则∠P=

度.

11.小张同学想用描点法画二次函数 的图象,取自变量x的5个值,请你指出这个算错的y值所对应的x= .

x-2 -1 0 1 2

y11 2 -1 2 5

12.将长为1 ,宽为a的矩形纸片( ),如图那样折一下,剪下一个边长等于矩形宽度的正方形(称为第一次操作);再把剩下的矩形如图那样折一 下,剪下一 个边长等于此时矩形宽 度的正方形(称为第二次操作);如此再操作一次,若在第3次操作后,剩下的矩形为正方形,则 a的值为¬¬¬¬¬¬ .

二、选择题:(本大题共5小题,每小题3分,共15分)

13.将二次函数 化为 的形式,结果正确的是

A. B.

C. D.

14.对甲、乙两同学100米短跑进行5次测试,他们的成绩通过计算得: 甲= 乙,S2甲=0.025,S2乙=0.026,下列说法正确的是

C. 甲比乙短跑成绩稳定 D. 乙比甲短跑成绩稳定

15. 若关于 的方程 有两个不相等的实数根,则 的取值范围是

A. B. 且

C. D. 且

16.若两圆的直径分别是2cm和10cm,圆心距为8cm,则这两个圆的位置关系是

A.内切 B.相交 C.外切 D.外离

17.已知二次函数y=ax2+bx+c(a≠0)的图象如图,则下列结论

中正确的是

A.当x>1时,y随x的增大而增大

B.3是方程ax2+bx+c=0的一个根

C.a c>0

D.a+b+c<0

三、解答题:

18.(本题5分)计算:

19.(本题5分)化简: ( ).

20.(本题10分,每小题5分)用适当的方法解下列方程:

(1)x2-5x-6=0; (2)4x(2x-1)=3(1-2x).

21.(本题6分)

(1)若五个数据2,-1 ,3 , ,5的极差为8,求 的值;

(2)已知六个数据-3,-2,1,3,6, 的平均数为1,求这组数据的方差.

22.(本题6分)如图,在平行四边形ABCD中,对角线AC、BD相交于点O,AF⊥BD,CE⊥BD,垂足分别为E、F;

(1)连结AE、CF,得四边形AFCE,试判断四边形AFCE是 下列图形中的哪一种?①平行四边形;②菱形;③矩形;

(2)请证明你的结论;

23.(本题8分)已知二次函数 的图象与x轴有两个交点.

(1)求k的取值范围;

(2)如果k取上面条件中的最大整数,且一元二次方程 与 有一个相同的根,求常数m的值.

24.(本题8分)已知二次函数 的图象C1与x轴有且只有一个公共点.

(1)求C1的顶点坐标;

(2)在如图所示的直角坐标系中画出C1的大致图象。

免费找卷子的

九年级数学期末考试的时间紧,,同学们要提高数学复习的质量和学习效益。

九年级数学上册期末质量检测试卷

一、选择题(单项选择,每小题3分,共21分)在答题卡上相应题目的答题区域内作答.

1.下列计算正确的是()

A. B. C. D.

2.如图, 是∠ 的边 上一点,且点 的坐标为(3,4),

则sin 的值是( )

A. B. C. D. 无法确定

3.一个不透明的袋子中装有2个红球,3个白球,4个黄球,这些球除颜色外没有任何其它区别,现从这个盒子中随机摸出一个球,摸到白球的概率是()

A.B.C.D.

4.用配方法解方程 ,下列配方结果正确的是( )

A. ; B. ;

C. ; D. .

5.如果二次根式 有意义,那么 的取值范围是().

A. ≥5B. ≤5C. >5D. <5

6.对于 的图象下列叙述正确的是()

A.顶点坐标为(-3,2) B.对称轴为直线 3

C.当 3时, 有最大值2 D.当 ≥3时 随 增大而减小

7.如图,△ABC中, 、 分别是 、 的中点,给出下列结论:

① ;② ;③ ;④ ∽ .

其中正确的结论有( )

A.1个 B.2个 C.3个 D.4个

二、填空题(每小题4分,共40分)在答题卡上相应题目的答题区域内作答.

8.化简: ;

9.一元二次方程 的解是 .

10.计算:sin30°+tan45°.

11.某商品经过两次降价,单价由50元降为30元.已知两次降价的百分率相同,求每次降价的百分率.若设每次降价百分率为 ,则可列方程: .

12.已知抛物线的表达式是 ,那么它的顶点坐标是 ;

13.在 中, 90°,若cosA , 2㎝,则 _________㎝;

14.已知 ,则 ;

15. 如图 、 分别在 的边 、 上,要使△AED∽△ABC,应添加条件是 ;(只写出一种即可).

16.如图,点 是 的重心,中线 3㎝,则㎝.

17. 是关于 的方程 的根,且 ,则 的值是 .

三、解答题(共89分)在答题卡上相应题目的答题区域内作答.

18.(9分) 计算:

19.(9分) 解方程:

20.(9分)已知 , ,求代数式 的值.

21.(9分) 如图,为测楼房BE的高,用测量仪在距楼底部30米

的D处,用高1.2米的测角仪 测得楼顶B的仰角α为60°.

求楼房BE的高度.(精确到0.1米).

22.(9分)如图,已知 是原点, 、 两点的坐标分别为(3,-1)、(2,1).

(1)以点 为位似中心,在 轴的左侧将 放大两倍(即新图与原图的位似比为2),画出图形并写出点 、 的对应点的坐标;

(2)如果 内部一点 的坐标为 ,写出 的对应点 的坐标.

23.(9分)为了节约用水,某水厂规定:某单元居民如果一个月的用水量不超过 吨,那么这个月该单元居民只交10元水费.如果超过 吨,则这个月除了仍要交10元水费外,超过那部分按每吨 元交费.

元(用含 的式子表示).

(2)下表是该单元居民9月、10月的用水情况和交费情况:

月份 用水量(吨) 交费总数(元)

9月份 85 25

10月份 50 10

根据上表数据,求该 吨是多少?

24.(9分)甲、乙、丙三位同学进行一次乒乓球单打比赛,要从中选出两位同学打第一场比赛.请用树状图法或列表法,求恰好选中甲、乙两位同学打第一场比赛的概率.

25.(13分)如图,抛物线 与 轴相交于

点 、 ,且经过点 (5,4).该抛物线顶点为 .

(1)求 的值和该抛物线顶点 的坐标.

(2)求 的面积;

(3)若将该抛物线先向左平移4个单位,再向上平移2个单位, 求出平移后抛物线的解析式.

26.(13分)如图,在 中 , .点 是线段 边上的一动点(不含 、 两端点),连结 ,作 ,交线段 于点 .

1. 求证: ∽ ;

2. 设 , ,请写 与 之间的函数关系式,并求 的最小值。

九年级数学上册月考卷

九年级数学上册期末试卷(含答案)

一.选择题(共12小题,每小题4分,满分48分)

1.若x:y=6:5,则下列等式中不正确的是( )

A. B. C. D.

2.二次函数y=x2﹣2x﹣2与坐标轴的交点个数是( )

A.0个 B.1个 C.2个 D.3个

3.如图,在平行四边形ABCD中,E为CD上一点,DE:CE=2:3,连结AE,BD交于点F,则S△DEF:S△ADF:S△ABF等于( )

A.2:3:5 B.4:9:25 C.4:10:25 D.2:5:25

4.从标有1,2,3,4的四张卡片中任取两张,卡片上的数字之和为奇数的概率是( )

A. B. C. D.

5.如图,一根5m长的绳子,一端拴在互相垂直的围墙墙角的柱子上,另一端拴着一只小羊A(羊只能在草地上活动),那么小羊A在草地上的最大活动区域面积是( )

A. πm2 B. πm2 C. πm2 D. πm2

6.二次函数y=ax2﹣2x﹣3(a<0)的图象一定不经过( )

A.第一象限 B.第二象限 C.第三象限 D.第四象限.

7.在下列命题中,正确的是( )

A.三点确定一个圆

B.圆的内接等边三角形只有一个

C.一个三角形有且只有一个外接圆

D.一个四边形一定有外接圆

8.二次函数y=ax2+bx+c(a≠0)的图象如图,下列结论:

(1)c<0;

(2)b>0;

(3)4a+2b+c>0;

(4)(a+c)2

其中不正确的有( )

A.1个 B.2个 C.3个 D.4个

9.某块面积为4000m2的多边形草坪,在嘉兴市政建设规划设计图纸上的面积为250cm2,这块草坪某条边的长度是40m,则它在设计图纸上的长度是( )

A.4cm B.5cm C.10cm D.40cm

10.抛物线y=﹣(x﹣2)2+1经过平移后与抛物线y=﹣(x+1)2﹣2重合,那么平移的方法可以是( )

A.向左平移3个单位再向下平移3个单位

B.向左平移3个单位再向上平移3个单位

C.向右平移3个单位再向下平移3个单位

D.向右平移3个单位再向上平移3个单位

11.如图,将∠AOB放置在5×5的正方形网格中,则tan∠AOB的值是( )

A. B. C. D.

12.如图,等腰Rt△ABC(∠ACB=90°)的直角边与正方形DEFG的边长均为2,且AC与DE在同一直线上,开始时点C与点D重合,让△ABC沿这条直线向右平移,直到点A与点E重合为止.设CD的长为x,△ABC与正方形DEFG重合部分(图中阴影部分)的面积为y,则y与x之间的函数关系的图象大致是( )

A. B. C. D.

二.填空题(共6小题,每小题4分,满分24分)

13.已知弦AB把圆周分成1:5的两部分,则弦AB所对的圆心角的度数为__________.

14.如图,将弧AC沿弦AC折叠交直径AB于圆心O,则弧AC=__________度.

15.如图,我们把一个半圆与抛物线的一部分围成的封闭图形称为“果圆”.已知点A.B.C.D分别是“果圆”与坐标轴的交点,抛物线的解析式为y=x2﹣2x﹣3,AB为半圆的直径,则这个“果圆”被y轴截得的弦CD的长为__________.

16.如图,在直角三角形ABC中(∠C=90°),放置边长分别3,4,x的三个正方形,则x的值为__________.

17.如图,A.D.E是⊙O上的三个点,且∠AOD=120°,B.C是弦AD上两点,BC= ,△BCE是等边三角形.若设AB=x,CD=y,则y与x的函数关系式是__________.

18.如图,在Rt△ABC中,∠ABC=90°,BA=BC,点D是AB的中点,连结CD,过点B作BG⊥CD,分别交CD.CA于点E,F,与过点A且垂直于AB的直线相交于点G,连结DF.给出以下四个结论:① ;②FG= FB;③AF= ;④S△ABC=5S△BDF,其中正确结论的序号是__________.

九年级数学试卷真题

初三网权威发布初三数学期末考试题,更多初三数学期末考试题相关信息请访问初中三年级网。

导语 】这篇关于初三数学期末考试题的文章,是大范文网特地为大家整理的,希望对大家有所帮助!

一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)

1.在平面直角坐标系中,将抛物线y=x2﹣4先向右平移两个单位,再向上平移两个单位,得到的抛物线的解析式是()

A.y=(x+2)2+2B.y=(x﹣2)2﹣2C.y=(x﹣2)2+2D.y=(x+2)2﹣2

2.下列关于函数的图象说法:①图象是一条抛物线;②开口向下;③对称轴是y轴;④顶点(0,0),其中正确的有()

A.1个B.2个C.3个D.4个

3.如图是二次函数y=ax2+bx+c的部分图象,由图象可知不等式ax2+bx+c<0的解集是()

A.﹣1<x<5B.x>5C.x<﹣1且x>5D.x<﹣1或x>5

4.抛物线y=(x+2)2﹣3可以由抛物线y=x2平移得到,则下列平移过程正确的是()

A.先向左平移2个单位,再向上平移3个单位

B.先向左平移2个单位,再向下平移3个单位

C.先向右平移2个单位,再向下平移3个单位

D.先向右平移2个单位,再向上平移3个单位

5.为了测量被池塘隔开的A,B两点之间的距离,根据实际情况,作出如图图形,其中AB⊥BE,EF⊥BE,AF交BE于D,C在BD上.有四位同学分别测量出以下四组数据:①BC,∠ACB;②CD,∠ACB,∠ADB;③EF,DE,BD;④DE,DC,BC.能根据所测数据,求出A,B间距离的有()

A.1组B.2组C.3组D.4组

6.如图,△ABC与△DEF是位似图形,位似比为2:3,已知AB=4,则DE的长等于()

A.6B.5C.9D.

7.如图,直径为10的⊙A经过点C(0,5)和点O(0,0),B是y轴右侧⊙A优弧上一点,则cos∠OBC的值为()

A.B.C.D.

8.在Rt△ABC中,∠C=90°,若斜边AB是直角边BC的3倍,则tanB的值是()

A.2B.3C.D.

9.如图,点B、D、C是⊙O上的点,∠BDC=130°,则∠BOC是()

A.100°B.110°C.120°D.130°

10.如图,△ABC中,A,B两个顶点在x轴的上方,点C的坐标是(﹣1,0).以点C为位似中心,在x轴的下作△ABC的位似图形△A′B′C,并把△ABC的边长放大到原来的2倍.设点A′的对应点A的纵坐标是1.5,则点A"的纵坐标是()

A.3B.﹣3C.﹣4D.4

二、填空题(本大题共4小题,每小题5分,共20分)

11.已知二次函数y=x2+bx+3的对称轴为x=2,则b=.

12.若△ADE∽△ACB,且=,若四边形BCED的面积是2,则△ADE的面积是.

13.在Rt△ABC中,∠C=90°,AB=4,BC=2,则sin=.

14.如图,在正方形ABCD内有一折线段,其中AE丄EF,EF丄FC,并且AE=6,EF=8,FC=10,则正方形与其外接圆之间形成的阴影部分的面积为.

三、计算题(本大题共1小题,共8分)

15.计算:(﹣1)2016+2sin60°﹣|﹣|+π0.

四、解答题(本大题共7小题,共68分)

16.已知抛物线y=﹣x2+bx+c经过点A(3,0),B(﹣1,0).

(1)求抛物线的解析式;

(2)求抛物线的顶点坐标.

17.某校九年级数学兴趣小组的同学开展了测量湘江宽度的活动.如图,他们在河东岸边的A点测得河西岸边的标志物B在它的正西方向,然后从A点出发沿河岸向正北方向行进550米到点C处,测得B在点C的南偏西60°方向上,他们测得的湘江宽度是多少米?(结果保留整数,参考数据:≈1.414,≈1.732)

18.已知:如图,点P是⊙O外的一点,PB与⊙O相交于点A、B,PD与⊙O相交于C、D,AB=CD.

求证:(1)PO平分∠BPD;

(2)PA=PC.

19.如图,△ABC中,E是AC上一点,且AE=AB,∠EBC=∠BAC,以AB为直径的⊙O交AC于点D,交EB于点F.

(1)求证:BC与⊙O相切;

(2)若AB=8,sin∠EBC=,求AC的长.

20.如图,直线y=﹣x+b与反比例函数y=的图象相交于A(1,4),B两点,延长AO交反比例函数图象于点C,连接OB.

(1)求k和b的值;

(2)直接写出一次函数值小于反比例函数值的自变量x的取值范围;

(3)在y轴上是否存在一点P,使S△PAC=S△AOB?若存在请求出点P坐标,若不存在请说明理由.

21.如图,在△ABC中,∠C=90°,AD是∠BAC的平分线,O是AB上一点,以OA为半径的⊙O经过点D.

(1)求证:BC是⊙O切线;

(2)若BD=5,DC=3,求AC的长.

22.一种实验用轨道弹珠,在轨道上行驶5分钟后离开轨道,前2分钟其速度v(米/分)与时间t(分)满足二次函数v=at2,后三分钟其速度v(米/分)与时间t(分)满足反比例函数关系,如图,轨道旁边的测速仪测得弹珠1分钟末的速度为2米/分,求:

(1)二次函数和反比例函数的关系式.

(2)弹珠在轨道上行驶的速度.

(3)求弹珠离开轨道时的速度.

五、综合题(本大题共1小题,共14分)

23.如图,在平面直角坐标系xOy中,直线y=x+2与x轴交于点A,与y轴交于点C.抛物线y=ax2+bx+c的对称轴是x=﹣且经过A、C两点,与x轴的另一交点为点B.

(1)①直接写出点B的坐标;②求抛物线解析式.

(2)若点P为直线AC上方的抛物线上的一点,连接PA,PC.求△PAC的面积的值,并求出此时点P的坐标.

(3)抛物线上是否存在点M,过点M作MN垂直x轴于点N,使得以点A、M、N为顶点的三角形与△ABC相似?若存在,求出点M的坐标;若不存在,请说明理由.

一元二次方程100题

在每一次数学期末考试结束后,要学会反思,这样对于九年级的数学知识才会掌握熟练。以下是我为你整理的九年级数学上册期末试题,希望对大家有帮助!

九年级数学上册期末试题

一、选择题(本题共32分,每小题4分)

下面各题均有四个选项,其中只有一个是符合题意的.

1. 经过点P( , )的双曲线的解析式是( )

A. B.

C. D.

2. 如图所示,在△ABC中,DE//BC分别交AB、AC于点D、E,

AE=1,EC=2,那么AD与AB的比为

A. 1:2 B. 1:3

C. 1:4 D. 1:9

3. 一个袋子中装有6个红球3个白球,这些球除颜色外,形状、大小、质地等完全相同.在看不到球的条件下,随机地从这个袋子中摸出一个球,摸到红球的概率为

A. B. C. D.

4. 抛物线 的顶点坐标是

A. (-5,-2) B.

C. D. (-5,2)

5. △ABC在正方形网格纸中的位置如图所示,则 的值是

A. B.

C. D.

6. 要得到函数 的图象,应将函数 的图象

A.沿x 轴向左平移1个单位 B. 沿x 轴向右平移1个单位

C. 沿y 轴向上平移1个单位 D. 沿y 轴向下平移1个单位

7. 在平面直角坐标系中,如果⊙O是以原点为圆心,以10为半径的圆,那么点A(-6,8)

A. 在⊙O内 B. 在⊙O外

C. 在⊙O上 D. 不能确定

8.已知函数 (其中 )的图象如图所示,则函数 的图象可能正确的是

二、填空题(本题共16分,每小题4分)

9. 若 ,则锐角 = .

10. 如图所示,A、B、C为⊙O上的三个点, 若 ,

则∠AOB的度数为 .

11.如图所示,以点 为圆心的两个同心圆中,大圆的弦 是小圆的切线,

点 为切点,且 , ,连结 交小圆于点 ,

则扇形 的面积为 .

12. 如图所示,长为4 ,宽为3 的长方形木板在桌面上做

无滑动的翻滚(顺时针方向),木板上点A位置变化为 ,

由 此时长方形木板的边

与桌面成30°角,则点A翻滚到A2位置时所经过的路径总长度为 cm.

三、解答题(本题共30分,每小题5分)

13. 计算:

14. 已知:如图,在Rt△ABC中,

的正弦、余弦值.

15.已知二次函数 .

(1)在给定的直角坐标系中,画出这个函数图象的示意图;

(2)根据图象,写出当 时 的取值范围.

16. 已知:如图,AB是⊙O的弦,半径OC、OD分别交AB

于点E、F,且AE=BF.

求证:OE=OF

17.已知:如图,将正方形ABCD纸片折叠,使顶点A落在边CD上的

点P处(点P与C、D不重合),点B落在点Q处,折痕为EF,PQ与

BC交于点G.

求证:△PCG∽△EDP.

18.在一个不透明的口袋中装有白、黄两种颜色的乒乓球(除颜色外其余都相同),其中黄球有1个,白球有2个.第一次摸出一个球,做好记录后放回袋中,第二次再摸出一个球,请用列表或画树状图的方法求两次都摸到黄球的概率.

四、解答题(本题共20分,每小题5分)

19.已知:如图,在平面直角坐标系xoy中,直线 与

x轴交于点A,与双曲线 在第一象限内交于点B,

BC垂直x轴于点C,OC=2AO.求双曲线 的解析式.

20.已知:如图,一架直升飞机在距地面450米上空的P点,

测得A地的俯角为 ,B地的俯角为 (点P和AB所在

的直线在同一垂直平面上),求A、B两地间的距离.

21.作图题(要求用直尺和圆规作图,不写出作法,

只保留作图痕迹,不要求写出证明过程).

已知:圆.

求作:一条线段,使它把已知圆分成面积相等的两部分.

22.已知:如图,△ABC内接于⊙O,且AB=AC=13,BC=24,

PA∥BC,割线PBD过圆心,交⊙O于另一个点D,联结CD.

⑴求证:PA是⊙O的切线;

⑵求⊙O的半径及CD的长.

五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)

23. 已知:在 中, ,点 为 边的中点,点 在 上,连结 并延长到点 ,使 ,点 在线段 上,且 .

(1)如图1,当 时,

求证: ;

(2)如图2,当 时,

则线段 之间的数量关系为;

(3)在(2)的条件下,延长 到 ,使 ,

连接 ,若 ,求 的值.

24.已知 均为整数,直线 与三条抛物线 和 交点的个数分别是2,1,0,若

25.已知二次函数 .

(1)求它的对称轴与 轴交点D的坐标;

(2)将该抛物线沿它的对称轴向上平移,如图所示,设平移后的抛物线的顶点为 ,与 轴、 轴的交点分别为A、B、C三点,连结AC、BC,若∠ACB=90°.

①求此时抛物线的解析式;

②以AB为直径作圆,试判断直线CM与此圆的位置关系,并说明理由.

九年级数学上册期末试题答案

阅卷须知:

1.为便于阅卷,本试卷答案中有关解答题的推导步骤写得较为详细,阅卷时,只要考生将主要过程正确写出即可。

以上就是九年级数学卷子的全部内容,九年级数学上册测试卷(满分:150分,时间:120分钟)一、选择题(本大题共10小题,每小题4分,共40分)1.抛物线 的顶点坐标是()A.(2,0)B.(-2,0)C.(0,2)D.(0,-2)2.若(2,5)、(4。

猜你喜欢