当前位置: 首页 > 所有学科 > 数学

高二数学试卷及答案,高二上学期期中考试数学试卷

  • 数学
  • 2023-12-10

高二数学试卷及答案?2019-2020年高二学业水平考试数学试题含答案一.选择题:(本大题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。)1.已知集合A={x|x=3n+2,n∈N},B={6,8,10,那么,高二数学试卷及答案?一起来了解一下吧。

高二数学试卷真题及答案

【 #高二#导语】着眼于眼前,不要沉迷于玩乐,不要沉迷于学习进步没有别*的痛苦中,进步是一个由量变到质变的过程,只有足够的量变才会有质变,沉迷于痛苦不会改变什么。高二频道为你整理了《高二数学必修二测试题及答案》,希望对你有所帮助!

【一】

卷Ⅰ

一、选择题:本大题共12小题,每题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.

1.对于常数、,“”是“方程的曲线是双曲线”的

A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件

2.命题“所有能被2整除的数都是偶数”的否定是

A.所有不能被2整除的数都是偶数B.所有能被2整除的数都不是偶数

C.存在一个不能被2整除的数是偶数D.存在一个能被2整除的数不是偶数

3.已知椭圆上的一点到椭圆一个焦点的距离为,则到另一焦点距离为

A.B.C.D.

4.在一次跳伞训练中,甲、乙两位学员各跳一次,设命题是“甲降落在指定范围”,是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为

A.B.C.D.

5.若双曲线的离心率为,则其渐近线的斜率为

A.B.C.D.

6.曲线在点处的切线的斜率为

A.B.C.D.

7.已知椭圆的焦点与双曲线的焦点恰好是一个正方形的四个顶点,则抛物线的焦点坐标为

A.B.C.D.

8.设是复数,则下列命题中的假命题是

A.若,则B.若,则

C.若,则D.若,则

9.已知命题“若函数在上是增函数,则”,则下列结论正确的是

A.否命题“若函数在上是减函数,则”是真命题

B.逆否命题“若,则函数在上不是增函数”是真命题

C.逆否命题“若,则函数在上是减函数”是真命题

D.逆否命题“若,则函数在上是增函数”是假命题

10.马云常说“便宜没好货”,他这句话的意思是:“不便宜”是“好货”的

A.充分条件B.必要条件C.充分必要条件D.既不充分也不必要条件

11.设,,曲线在点()处切线的倾斜角的取值范围是,则到曲线对称轴距离的取值范围为

A.B.C.D.

12.已知函数有两个极值点,若,则关于的方程的不同实根个数为

A.2B.3C.4D.5

卷Ⅱ

二、填空题:本大题共4小题,每小题5分,共20分.

13.设复数,那么等于________.

14.函数在区间上的值是________.

15.已知函数,则=________.

16.过抛物线的焦点作倾斜角为的直线,与抛物线分别交于、两点(在轴左侧),则.

三、解答题:本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤.

17.(本小题满分10分)

已知z是复数,和均为实数(为虚数单位).

(Ⅰ)求复数;

(Ⅱ)求的模.

18.(本小题满分12分)

已知集合,集合

若是的充分不必要条件,求实数的取值范围.

19.(本小题满分12分)

设椭圆的方程为点为坐标原点,点,分别为椭圆的右顶点和上顶点,点在线段上且满足,直线的斜率为.

(Ⅰ)求椭圆的离心率;

(Ⅱ)设点为椭圆的下顶点,为线段的中点,证明:.

20.(本小题满分12分)

设函数(其中常数).

(Ⅰ)已知函数在处取得极值,求的值;

(Ⅱ)已知不等式对任意都成立,求实数的取值范围.

21.(本小题满分12分)

已知椭圆的离心率为,且椭圆上点到椭圆左焦点距离的最小值为.

(Ⅰ)求的方程;

(Ⅱ)设直线同时与椭圆和抛物线相切,求直线的方程.

22.(本小题满分12分)

已知函数(其中常数).

(Ⅰ)讨论函数的单调区间;

(Ⅱ)当时,,求实数的取值范围.

参考答案

一.选择题

CDBACCDABBDB

二.填空题

三.解答题

17.解:(Ⅰ)设,所以为实数,可得,

又因为为实数,所以,即.┅┅┅┅┅┅┅5分

(Ⅱ),所以模为┅┅┅┅┅┅┅10分

18.解:(1)时,,若是的充分不必要条件,所以,

,检验符合题意;┅┅┅┅┅┅┅4分

(2)时,,符合题意;┅┅┅┅┅┅┅8分

(3)时,,若是的充分不必要条件,所以,

,检验不符合题意.

综上.┅┅┅┅┅┅┅12分

19.解(Ⅰ)已知,,由,可得,┅┅┅┅┅┅┅3分

所以,所以椭圆离心率;┅┅┅┅┅┅┅6分

(Ⅱ)因为,所以,斜率为,┅┅┅┅┅┅┅9分

又斜率为,所以(),所以.┅┅┅┅┅┅┅12分

20.解:(Ⅰ),因为在处取得极值,所以,解得,┅┅┅┅┅┅┅3分

此时,

时,,为增函数;时,,为减函数;

所以在处取得极大值,所以符合题意;┅┅┅┅┅┅┅6分

(Ⅱ),所以对任意都成立,所以,所以.┅┅┅┅┅┅┅12分

21.解:(Ⅰ)设左右焦点分别为,椭圆上点满足所以在左顶点时取到最小值,又,解得,所以的方程为

.(或者利用设解出得出取到最小值,对于直接说明在左顶点时取到最小值的,酌情扣分);┅┅┅┅┅┅┅4分

(Ⅱ)由题显然直线存在斜率,所以设其方程为,┅┅┅┅┅┅┅5分

联立其与,得到

,,化简得┅┅┅┅┅┅┅8分

联立其与,得到

,,化简得,┅┅┅┅┅┅┅10分

解得或

所以直线的方程为或┅┅┅┅┅┅┅12分

22.(Ⅰ),

设,该函数恒过点.

当时,在增,减;┅┅┅┅┅┅┅2分

当时,在增,减;┅┅┅┅┅┅┅4分

当时,在增,减;┅┅┅┅┅┅┅6分

当时,在增.┅┅┅┅┅┅┅8分

(Ⅱ)原函数恒过点,由(Ⅰ)可得时符合题意.┅┅┅┅┅┅┅10分

当时,在增,减,所以,不符合题意.

┅┅┅┅┅┅┅12分

【二】

一、选择题

1.一个物体的位移s(米)和与时间t(秒)的关系为s?4?2t?t,则该物体在4秒末的瞬时速度是A.12米/秒B.8米/秒C.6米/秒D.8米/秒2.由曲线y=x2,y=x3围成的封闭图形面积为为

A.21711B.C.D.

41212323.给出下列四个命题:(1)若z?C,则z≥0;(2)2i-1虚部是2i;(3)若a?b,则a?i?b?i;(4)若z1,z2,且z1>z2,则z1,z2为实数;其中正确命题的个数为....A.1个B.2个C.3个D.4个

4.在复平面内复数(1+bi)(2+i)(i是虚数单位,b是实数)表示的点在第四象限,则b的取值范围是

A.b

B.b??11C.?b>c)

=2+∴

a-ca-c114.+≥4得+≥a-bb-ca-bb-ca-ca11+-1,所以,a1=-1?2a119.(1)a1=S1=3,又∵an>0,所以a1=3-1.

S2=a1?a2?a21??1,所以a2?5?3,2a23

S3=a1?a2?a3?(2)猜想an=a31??1所以a3?7?5.2a32n-1.

3-1成立.

2k-1成立

2k+1.

2n+1-证明:1o当n=1时,由(1)知a1=2o假设n=k(k?N+)时,ak=2k+1-ak+1=Sk?1?Sk?(ak?1aa111-??1)?(k??1)=k+1+2ak+12ak?12ak2所以ak+1+22k+1ak+1-2=0

ak+1=

2(k+1)+1-2(k+1)-1所以当n=k+1时猜想也成立.综上可知,猜想对一切n?N+都成立.

kxkx¢¢f(x)=e+kxe21.解:(1),f(0)=1,f(0)=0

∴y=f(x)在(0,0)处的切线方程为y=x.

(x)=ekx+kxekx=(1+kx)ekx=0,得x=-(2)法一f¢若k>0,则当x?(?,当x?(1(k10)k1(x)0,f(x)单调递增.,+?)时,f¢k1若k0,f(x)单调递增.),f¢k1当x?((x)0,∴1+kx≥0.即1+kx≥0在区间(-1,1)上恒成立.令g(x)=1+kx,

4

ìg(-1)≥0??∴í解得-1≤k≤1.?g(1)≥0??当k=0时,f(x)=1.

故k的取值范围是[-1,0)U(0,1].

22.解:(1)当a??2时,f(x)?x2?2lnx,

2(x2-1)(x)=>0.x?(1,?),f¢x故函数f(x)在(1,+?)上是增函数.2x2+a(x)=>0.(2)f¢x当x?[1,e],2x2+a?[a2,a+2e2].

若a≥-2,f¢,(x)在[1,e]上非负(仅当a=-2,x=1时,f¢(x)=0)故函数f(x)在[1,e]上是增函数.此时,[f(x)]min=f(1)=1.若-2e2

故[f(x)]min=f(-若a≤-2e2,f¢(x)在[1,e]上非正(仅当时a=-2e2,x=e时,f¢(x)=0)故函数f(x)在[1,e]上是减函数,此时[f(x)]min=f(e)=a+e2.

综上可知,当a≥-2时,f(x)的最小值为1,相应的x的值为1;

当-2e2

2e2时,f(x)的最小值为a+e2,相应的x值为e.

高二数学第一单元测试题

很多同学总是抱怨数学学不好,其实是因为试题没有做到位,数学需要大量的练习来帮助同学们理解知识点。以下是我为您整理的关于高二数学下册双曲线单元训练题及答案的相关资料,供您阅读。

高二数学下册双曲线单元训练题及答案

一、选择题(每小题6分,共42分)

1.若方程 =-1表示焦点在y轴上的双曲线,则它的半焦距c的取值范围是( )

A.(0,1) B.(1,2) C.(1,+∞) D.以上都不对

答案:C

解析: =1,又焦点在y轴上,则m-1>0且|m|-2>0,故m>2,c= >1.

2.(2010江苏南京一模,8)若双曲线的焦点到渐近线的距离等于实轴长,则该双曲线的离心率e等于( )

A. B. C. D.

答案:C

解析:设双曲线方程为 =1,则F(c,0)到y= x的距离为 =2a b=2a, e= .

3.(2010湖北重点中学模拟,11)与双曲线 =1有共同的渐近线,且经过点(-3, 4 )的双曲线方程是( )

A. =1 B. =1

C. =1 D. =1

答案:A

解析:设双曲线为 =λ,∴λ= =-1,故选A.

4.设离心率为e的双曲线C: =1(a>0,b>0)的右焦点为F,直线l过点F且斜率为k,则直线l与双曲线C在左、右两支都相交的充要条件是( )

A.k2-e2>1 B.k2-e2<1

C.e2-k2>1 D.e2-k2<1

答案:C

解析:双曲线渐近线的斜率为± ,直线l与双曲线左、右两支都相交,则- 1.

5.下列图中的多边形均为正多边形,M、N是所在边上的中点,双曲线均以图中的F1、F2为焦点,设图①②③中的双曲线的离心率分别为e1、e2、e3,则( )

A.e1>e2>e3 B.e1

C.e1=e3 e2

答案:D

解析:e1= +1,

对于②,设正方形边长为2,则|MF2|= ,|MF1|=1,|F1F2|=2 ,

∴e2= ;

对于③设|MF1|=1,则|MF2|= ,?|F1F2|=2,

∴e3= +1.

又易知 +1> ,故e1=e3>e2.

6.(2010湖北重点中学模拟,11)已知椭圆E的离心率为e,两焦点为F1、F2,抛物线C以F1为顶点,F2为焦点,P为两曲线的一个交点,若 =e,则e的值为( )

A. B. C. D.

答案:A

解析:设P(x0,y0),则ex0+a=e(x0+3c) e= .

7.(2010江苏南通九校模拟,10)已知双曲线 =1(a>0,b>0)的右焦点为F,右准线与一条渐近线交于点A,△OAF的面积为 (O为原点),则两条渐近线的夹角为( )

A.30° B.45° C.60° D.90°

答案:D

解析:A( ),S△OAF= • •c= a=b,故两条渐近线为y=±x,夹角为90°.

二、填空题(每小题5分,共15分)

8.已知椭圆 =1与双曲线 =1(m>0,n>0)具有相同的焦点F1、F2,设两曲线的一个交点为Q,∠QF1F2=90°,则双曲线的离心率为______________.

答案:

解析:∵a2=25,b2=16,∴c= =3.

又|QF1|+|QF2|=2a=10,|QF2|-|QF1|=2m,

∴|QF2|=5+m,|QF1|=5-m.

又|QF2|2=|QF1|2+|F1F2|2,

即(5+m)2=(5-m)2+62 m= ,

∴e= = .

9.(2010湖北黄冈一模,15)若双曲线 =1的一条准线恰为圆x2+y2+2x=0的一条切线,则k等于_________________.

答案:48

解析:因圆方程为(x+1)2+y2=1,故- =-2,即 =2,k=48.

10.双曲线 -y2=1(n>1)的两焦点为F1、F2,P在双曲线上,且满足|PF1|+|PF2|=2 ,则△PF1F2的面积为_______________.

答案:1

解析:不妨设|PF1|>|PF2|,则|PF1|-|PF2|=2 ,故|PF1|= ,|PF2|= ,又|F1F2|2=4(n+1)=|PF1|2+|PF2|2,∴△PF1F2为Rt△.故 = |PF1|•|PF2|=1.

三、解答题(11—13题每小题10分,14题13分,共43分)

11.若双曲线 =1(a>0,b>0)的右支上存在与右焦点和左准线距离相等的点,求离心率e的取值范围.

解析:如右图,设点M(x0,y0)在双曲线右支上,依题意,点M到右焦点F2的距离等于它到左准线的距离|MN|,即

|MF2|=|MN|.

∵ =e,∴ =e, =e.

∴x0= .

∵x0≥a,∴ ≥a.

∵ ≥1,e>1,∴e2-e>0.

∴1+e≥e2-e.∴1- ≤e≤1+ .

但e>1,∴1

12.已知△P1OP2的面积为 ,P为线段P1P2的一个三等分点,求以直线OP1、OP2为渐近线且过点P而离心率为 的双曲线方程.

解析:以O为原点,∠P1OP2的角平分线为x轴建立如右图所示的直角坐标系,设双曲线方程为 =1(a>0,b>0),由e2= =1+( )2=( )2得 .

∴两渐近线OP1、OP2方程分别为y= x和y=- x,设点P1(x1, x1),点P2(x2,- x2)(x1>0,x2>0),则点P分 所成的比λ= =2.得P点坐标为( ),即( ),又点P在双曲线 =1上.

所以 =1,

即(x1+2x2)2-(x1-2x2)2=9a2.

8x1x2=9a2. ①

又|OP1|= x1,

|OP2|= x2,

sinP1OP2= ,

∴ = |OP1|•|OP2|•sinP1OP2= • x1x2• = ,

即x1x2= . ②

由①②得a2=4,∴b2=9,

故双曲线方程为 =1.

13.(2010江苏扬州中学模拟,23)已知倾斜角为45°的直线l过点A(1,-2)和点B,其中B在第一象限,且?|AB|=3 .

(1)求点B的坐标;

(2)若直线l与双曲线C: -y2=1(a>0)相交于不同的两点E、F,且线段EF的中点坐标为(4,1),求实数a的值.

解:(1)直线AB方程为y=x-3,设点B(x,y),

由 及x>0,y>0,得x=4,y=1,∴点B的坐标为(4,1).

(2)由 得

( -1)x2+6x-10=0.

设E(x1,y1),F(x2,y2),则x1+x2= =4,得a=2,此时,Δ>0,∴a=2.

14.如右图,F1、F2分别是双曲线x2-y2=1的左、右焦点,点A的坐标是( ,- ),点B在双曲线上,且 • =0.

(1)求点B的坐标;

(2)求证:∠F1BA=∠F2BA.

(1)解析:依题意知F1(-2,0),F2(2,0),?A( ,- ).

设B(x0,y0),则 =( ,- ),? =(x0- ,y0+ ),

∵ • =0,

∴ (x0- )- (y0+ )=0,

即3x0-y0=2 .

又∵x02-y02=1,

∴x02-(3x0-2 )2=1,

(2 x0-3)2=0.

∴x0= ,代入3x0-y0=2 ,得y0= .

∴点B的坐标为( , ).

(2)证明: =(- ,- ),?BF2=( ,- ), =(- ,- ),

cosF1BA= ,

cosF2BA= ,

高二数学卷子电子版免费

【说明】 本试卷满分100分,考试时间90分钟.

一、选择题(每小题6分,共42分)

1.b2=ac,是a,b,c成等比数列的()

A.充分不必要条件 B.必要非充分条件

C.充要条件 D.既不充分也不必要条件

【答案】B

【解析】因当b2=ac时,若a=b=c=0,则a,b,c不成等比数列;若a,b,c成等比,则 ,即b2=ac.

2.一个公比q为正数的等比数列{an},若a1+a2=20,a3+a4=80,则a5+a6等于()

A.120B.240 C.320 D.480

【答案】C

【解析】∵a1+a2,a3+a4,a5+a6也成等比数列(公比为q2).

∴a5+a6= =320.

3.数列{an}的前n项和Sn=3n+a,要使{an}是等比数列,则a的值为()

A.0B.1C.-1D.2

【答案】C

【解析】∵an=

要使{an}成等比,则3+a=2•31-1=2•30=2,即a=-1.

4.设f(x)是定义在R上恒不为零的函数,对任意实数x,y∈R,都有f(x)•f(y)=f(x+y),若a1= ,an=f(n)(n∈N*),则数列{an}前n项和Sn的取值范围是()

A.[ ,2)B.[ ,2]

C.[ ,1)D.[ ,1]

【答案】C

【解析】因f(n+1)=f(1)•f(n),则an+1=a1•an= an,

∴数列{an}是以 为首项,公比为 的等比数列.

∴an=( )n.

Sn= =1-( )n.

∵n∈N*,∴ ≤Sn<1.

5.等比数列{an}的各项都是正数,且a2, a3,a1成等差数列,则 的值是()

A.B.

C.D. 或

【答案】B

【解析】∵a3=a2+a1,

∴q2-q-1=0,q= ,或q= (舍).

∴ .

6.(2010北京宣武区模拟,4)在正项等比数列{an}中,a1、a99是方程x2-10x+16=0的两个根,则a40•a50•a60的值为()

A.32 B.64C.±64 D.256

【答案】B

【解析】因a1•a99=16,故a502=16,a50=4,a40•a50•a60=a503=64.

7.如果P是一个等比数列的前n项之积,S是这个等比数列的前n项之和,S′是这个等比数列前n项的倒数和,用S、S′和n表示P,那么P等于()

A.(S•S′B.

C.( )n D.

【答案】B

【解析】设等比数列的首项为a1,公比q(q≠1)

则P=a1•a2•…•an=a1n• ,

S=a1+a2+…+an= ,

S′= +…+ ,

∴ =(a12qn-1 =a1n =P,

当q=1时和成立.

二、填空题(每小题5分,共15分)

8.在等比数列中,S5=93,a2+a3+a4+a5+a6=186,则a8=___________________.

【答案】384

【解析】易知q≠1,由S5= =93及 =186.

知a1=3,q=2,故a8=a1•q7=3×27=384.

9.(2010湖北八校模拟,13)在数列{an}中,Sn=a1+a2+…+an,a1=1,an+1= Sn(n≥1),则an=

【答案】( )•( )n-2

【解析】∵an+1= Sn,

∴an= Sn-1(n≥2).

①-②得,an+1-an= an,

∴ (n≥2).

∵a2= S1= ×1= ,

∴当n≥2时,an= •( )n-2.

10.给出下列五个命题,其中不正确的命题的序号是_______________.

①若a,b,c成等比数列,则b= ②若a,b,c成等比数列,则ma,mb,mc(m为常数)也成等比数列③若{an}的通项an=c(b-1)bn-1(bc≠0且b≠1),则{an}是等比数列④若{an}的前n项和Sn=apn(a,p均为非零常数),则{an}是等比数列⑤若{an}是等比数列,则an,a2n,a3n也是等比数列

【答案】②④

【解析】②中m=0,ma,mb,mc不成等比数列;

④中a1=ap,a2=ap(p-1),a3=ap2(p-1), ,故②④不正确,①③⑤均可用定义法判断正确.

三、解答题(11—13题每小题10分,14题13分,共43分)

11.等比数列{an}的公比为q,作数列{bn}使bn= ,

(1)求证数列{bn}也是等比数列;

(2)已知q>1,a1= ,问n为何值时,数列{an}的前n项和Sn大于数列{bn}的前n项和Sn′.

(1)证明:∵ =q,

∴ 为常数,则{bn}是等比数列.

(2)【解析】Sn=a1+a2+…+an

= ,

Sn′=b1+b2+…+bn

= ,

当Sn>Sn′时,

.

又q>1,则q-1>0,qn-1>0,

∴ ,即qn>q7,

∴n>7,即n>7(n∈N*)时,Sn>Sn′.

12.已知数列{an}:a1,a2,a3,…,an,…,构造一个新数列:a1,(a2-a1),(a3-a2),…,(an-an-1),…此数列是首项为1,公比为 的等比数列.

(1)求数列{an}的通项;

(2)求数列{an}的前n项和Sn.

【解析】(1)由已知得an-an-1=( )n-1(n≥2),a=1,

an=a1+(a2-a1)+(a3-a2)+…+(an-an-1)

= [1-( )n].

(2)Sn=a1+a2+a3+…+an

= - [ +( )2+…+( )n]

= - [1-( )n]

= ×( )n.

13.在等比数列{an}中,a1+a3=10,a2+a4=20,设cn=11-log2a2n.

(1)求数列{cn}的前n项和Sn.

(2)是否存在n∈N*,使得 成立?请说明理由.

【解析】(1)由已知得

∴an=a1qn-1=2n.

∴cn=11-log2a2n=11-log222n

=11-2n.

Sn=c1+c2+…+cn= =-n2+10n.

(2)假设存在n∈N*,使得 即 .

∴22n+3×2n-3<0,解得 .

∵ =1,而2n≥2,

故不存在n∈N*满足 .

14.(2010湖北黄冈中学模拟,22) 已知函数f(x)= ,x∈(0,+∞),数列{xn}满足xn+1=f(xn),(n=1,2,…),且x1=1.

(1)设an=|xn- |,证明:an+1<an;

(2)设(1)中的数列{an}的前n项和为Sn,证明:Sn< .

证明:(1)an+1=|xn+1- |=|f(xn)- |= .

∵xn>0,

∴an+1<( -1)|xn- |<|xn- |=an,

故an+1<an.

(2)由(1)的证明过程可知

an+1<( -1)|xn- |

<( -1)2|xn-1- |

<…<( -1)n|x1- |=( -1)n+1

∴Sn=a1+a2+…+an<|x1- |+( -1)2+…+( -1)n

=( -1)+( -1)2+…+( -1)n

= [1-( -1)n]< .

轻松阅读

“教育消费占首位”值得警惕

最近,中国社会科学院发布的《2010年社会蓝皮书》显示,子女教育费用在居民总消费中排第一位,超过养老和住房.中国社科院社会学研究所研究员李培林在报告中认为“这并不是很正常的”.

我国现有的人均GDP只有1 000美元,仍处于发展中国家的经济水平.在此情况下,教育费用占民民总消费第一位的状况,必然会挤占居民养老、住房、医疗等方面的费用开支.也就是说,教育费用居高不下,将直接影响到社会居民的医疗、养老等生命质量与日常生活水平的起码问题.由于我国现有老年人口已达总人口的10%(有的城市已超过此比例),且还有上升趋势,如果现在仍对教育费用居高不下的状况无动于衷,那么可以预见,在不久的将来,社会必将对养老、医疗等社会问题付出巨大代价.还有,从我国人口文化素质与社会的发展要求看,现有的教育水平不是高了,而是还需要在大发展.如果按现有的教育水准收,势必意味着我国必须为教育付出更多费用.

所以笔者觉得,教育费用占居民总消费第一位的社会现象,不仅对每个家庭,对教育自身的健康发展,同时对社会以后的健康发展,同时对社会以后的正常发展,都是一个亟待重视与解决的社会公共命题.

高二数学试卷

高二数学试题及答案1

一、选择题

1.某年级有6个班,分别派3名语文教师任教,每个教师教2个班,则不同的任课方法种数为( )

A.C26C24C22 B.A26A24A22

C.C26C24C22C33 D.A26C24C22A33

[答案] A

2.从单词“equation”中取5个不同的字母排成一排,含有“qu”(其中“qu”相连且顺序不变)的不同排法共有( )

A.120种 B.480种

C.720种 D.840种

[答案] B

[解析] 先选后排,从除qu外的6个字母中任选3个字母有C36种排法,再将qu看成一个整体(相当于一个元素)与选出的3个字母进行全排列有A44种排法,由分步乘法计数原理得不同排法共有C36A44=480(种).

3.从编号为1、2、3、4的四种不同的种子中选出3种,在3块不同的土地上试种,每块土地上试种一种,其中1号种子必须试种,则不同的试种方法有( )

A.24种 B.18种

C.12种 D.96种

[答案] B

[解析] 先选后排C23A33=18,故选B.

4.把0、1、2、3、4、5这六个数,每次取三个不同的数字,把其中最大的数放在百位上排成三位数,这样的三位数有( )

A.40个 B.120个

C.360个 D.720个

[答案] A

[解析] 先选取3个不同的数有C36种方法,然后把其中最大的数放在百位上,另两个不同的数放在十位和个位上,有A22种排法,故共有C36A22=40个三位数.

5.(2010湖南理,7)在某种信息传输过程中,用4个数字的一个排列(数字允许重复)表示一个信息,不同排列表示不同信息,若所用数字只有0和1,则与信息0110至多有两个对应位置上的数字相同的信息个数为( )

A.10 B.11

C.12 D.15

[答案] B

[解析] 与信息0110至多有两个对应位置上的数字相同的信息包括三类:

第一类:与信息0110只有两个对应位置上的数字相同有C24=6(个)

第二类:与信息0110只有一个对应位置上的数字相同有C14=4(个)

第三类:与信息0110没有一个对应位置上的数字相同有C04=1(个)

与信息0110至多有两个对应位置上的数字相同的信息有6+4+1=11(个)

6.北京《财富》全球论坛开幕期间,某高校有14名志愿者参加接待工作.若每天排早,中,晚三班,每班4人,每人每天最多值一班,则开幕式当天不同的排班种数为( )

A.C414C412C48 B.C1214C412C48

C.C1214C412C48A33 D.C1214C412C48A33

[答案] B

[解析] 解法1:由题意知不同的排班种数为:C414C410C46=14×13×12×114!10×9×8×74!6×52!=C1214C412C48.

故选B.

解法2:也可先选出12人再排班为:C1214C412C48C44,即选B.

7.(2009湖南理5)从10名大学毕业生中选3人担任村长助理,则甲、乙至少有1人入选,而丙没有入选的不同选法的种数为( )

A.85 B.56

C.49 D.28

[答案] C

[解析] 考查有限制条件的组合问题.

(1)从甲、乙两人中选1人,有2种选法,从除甲、乙、丙外的7人中选2人,有C27种选法,由分步乘法计数原理知,共有2C27=42种.

(2)甲、乙两人全选,再从除丙外的其余7人中选1人共7种选法.

由分类计数原理知共有不同选法42+7=49种.

8.以一个正三棱柱的顶点为顶点的四面体共有( )

A.6个 B.12个

C.18个 D.30个

[答案] B

[解析] C46-3=12个,故选B.

9.(2009辽宁理,5)从5名男医生、4名女医生中选3名医生组成一个医疗小分队,要求其中男、女医生都有,则不同的组队方案共有( )

A.70种 B.80种

C.100种 D.140种

[答案] A

[解析] 考查排列组合有关知识.

解:可分两类,男医生2名,女医生1名或男医生1名,女医生2名,

∴共有C25C14+C15C24=70,∴选A.

10.设集合Ⅰ={1,2,3,4,5}.选择Ⅰ的两个非空子集A和B,要使B中最小的数大于A中最大的数,则不同的选择方法共有( )

A.50种 B.49种

C.48种 D.47种

[答案] B

[解析] 主要考查集合、排列、组合的基础知识.考查分类讨论的思想方法.

因为集合A中的最大元素小于集合B中的最小元素,A中元素从1、2、3、4中取,B中元素从2、3、4、5中取,由于A、B非空,故至少要有一个元素.

1° 当A={1}时,选B的方案共有24-1=15种,

当A={2}时,选B的方案共有23-1=7种,

当A={3}时,选B的方案共有22-1=3种,

当A={4}时,选B的方案共有21-1=1种.

故A是单元素集时,B有15+7+3+1=26种.

2° A为二元素集时,

A中最大元素是2,有1种,选B的方案有23-1=7种.

A中最大元素是3,有C12种,选B的方案有22-1=3种.故共有2×3=6种.

A中最大元素是4,有C13种.选B的方案有21-1=1种,故共有3×1=3种.

故A中有两个元素时共有7+6+3=16种.

3° A为三元素集时,

A中最大元素是3,有1种,选B的方案有22-1=3种.

A中最大元素是4,有C23=3种,选B的'方案有1种,

∴共有3×1=3种.

∴A为三元素时共有3+3=6种.

4° A为四元素时,只能是A={1、2、3、4},故B只能是{5},只有一种.

∴共有26+16+6+1=49种.

二、填空题

11.北京市某中学要把9台型号相同的电脑送给西部地区的三所希望小学,每所小学至少得到2台,共有______种不同送法.

[答案] 10

[解析] 每校先各得一台,再将剩余6台分成3份,用插板法解,共有C25=10种.

12.一排7个座位分给3人坐,要求任何两人都不得相邻,所有不同排法的总数有________种.

[答案] 60

[解析] 对于任一种坐法,可视4个空位为0,3个人为1,2,3则所有不同坐法的种数可看作4个0和1,2,3的一种编码,要求1,2,3不得相邻故从4个0形成的5个空档中选3个插入1,2,3即可.

∴不同排法有A35=60种.

13.(09海南宁夏理15)7名志愿者中安排6人在周六、周日两天参加社区公益活动.若每天安排3人,则不同的安排方案共有________种(用数字作答).

[答案] 140

[解析] 本题主要考查排列组合知识.

由题意知,若每天安排3人,则不同的安排方案有

C37C34=140种.

14.2010年上海世博会期间,将5名志愿者分配到3个不同国家的场馆参加接待工作,每个场馆至少分配一名志愿者的方案种数是________种.

[答案] 150

[解析] 先分组共有C35+C25C232种,然后进行排列,有A33种,所以共有(C35+C25C232)A33=150种方案.

三、解答题

15.解方程Cx2+3x+216=C5x+516.

[解析] 因为Cx2+3x+216=C5x+516,所以x2+3x+2=5x+5或(x2+3x+2)+(5x+5)=16,即x2-2x-3=0或x2+8x-9=0,所以x=-1或x=3或x=-9或x=1.经检验x=3和x=-9不符合题意,舍去,故原方程的解为x1=-1,x2=1.

16.在∠MON的边OM上有5个异于O点的点,边ON上有4个异于O点的点,以这10个点(含O点)为顶点,可以得到多少个三角形?

[解析] 解法1:(直接法)分几种情况考虑:O为顶点的三角形中,必须另外两个顶点分别在OM、ON上,所以有C15C14个,O不为顶点的三角形中,两个顶点在OM上,一个顶点在ON上有C25C14个,一个顶点在OM上,两个顶点在ON上有C15C24个.因为这是分类问题,所以用分类加法计数原理,共有C15C14+C25C14+C15C24=5×4+10×4+5×6=90(个).

解法2:(间接法)先不考虑共线点的问题,从10个不同元素中任取三点的组合数是C310,但其中OM上的6个点(含O点)中任取三点不能得到三角形,ON上的5个点(含O点)中任取3点也不能得到三角形,所以共可以得到C310-C36-C35个,即C310-C36-C35=10×9×81×2×3-6×5×41×2×3-5×41×2=120-20-10=90(个).

解法3:也可以这样考虑,把O点看成是OM边上的点,先从OM上的6个点(含O点)中取2点,ON上的4点(不含O点)中取一点,可得C26C14个三角形,再从OM上的5点(不含O点)中取一点,从ON上的4点(不含O点)中取两点,可得C15C24个三角形,所以共有C26C14+C15C24=15×4+5×6=90(个).

17.某次足球比赛共12支球队参加,分三个阶段进行.

(1)小组赛:经抽签分成甲、乙两组,每组6队进行单循环比赛,以积分及净剩球数取前两名;

(2)半决赛:甲组第一名与乙组第二名,乙组第一名与甲组第二名作主客场交叉淘汰赛(每两队主客场各赛一场)决出胜者;

(3)决赛:两个胜队参加决赛一场,决出胜负.

问全程赛程共需比赛多少场?

[解析] (1)小组赛中每组6队进行单循环比赛,就是6支球队的任两支球队都要比赛一次,所需比赛的场次即为从6个元素中任取2个元素的组合数,所以小组赛共要比赛2C26=30(场).

(2)半决赛中甲组第一名与乙组第二名(或乙组第一名与甲组第二名)主客场各赛一场,所需比赛的场次即为从2个元素中任取2个元素的排列数,所以半决赛共要比赛2A22=4(场).

(3)决赛只需比赛1场,即可决出胜负.

所以全部赛程共需比赛30+4+1=35(场).

18.有9本不同的课外书,分给甲、乙、丙三名同学,求在下列条件下,各有多少种分法?

(1)甲得4本,乙得3本,丙得2本;

(2)一人得4本,一人得3本,一人得2本;

(3)甲、乙、丙各得3本.

[分析] 由题目可获取以下主要信息:

①9本不同的课外书分给甲、乙丙三名同学;

②题目中的3个问题的条件不同.

解答本题先判断是否与顺序有关,然后利用相关的知识去解答.

[解析] (1)分三步完成:

第一步:从9本不同的书中,任取4本分给甲,有C49种方法;

第二步:从余下的5本书中,任取3本给乙,有C35种方法;

第三步:把剩下的书给丙有C22种方法,

∴共有不同的分法有C49C35C22=1260(种).

(2)分两步完成:

第一步:将4本、3本、2本分成三组有C49C35C22种方法;

第二步:将分成的三组书分给甲、乙、丙三个人,有A33种方法,

∴共有C49C35C22A33=7560(种).

(3)用与(1)相同的方法求解,

得C39C36C33=1680(种).

高二数学试题及答案2

一、选择题

1.已知an+1=an-3,则数列{an}是()

A.递增数列 B.递减数列

C.常数列 D.摆动数列

解析:∵an+1-an=-30,由递减数列的定义知B选项正确.故选B.

答案:B

2.设an=1n+1+1n+2+1n+3++12n+1(nN*),则()

A.an+1an B.an+1=an

C.an+1

解析:an+1-an=(1n+2+1n+3++12n+1+12n+2+12n+3)-(1n+1+1n+2++12n+1)=12n+3-12n+1=-12n+32n+2.

∵nN*,an+1-an0.故选C.

答案:C

3.1,0,1,0,的通项公式为()

A.2n-1 B.1+-1n2

C.1--1n2 D.n+-1n2

解析:解法1:代入验证法.

解法2:各项可变形为1+12,1-12,1+12,1-12,,偶数项为1-12,奇数项为1+12.故选C.

答案:C

4.已知数列{an}满足a1=0,an+1=an-33an+1(nN*),则a20等于()

A.0 B.-3

C.3 D.32

解析:由a2=-3,a3=3,a4=0,a5=-3,可知此数列的最小正周期为3,a20=a36+2=a2=-3,故选B.

答案:B

5.已知数列{an}的通项an=n2n2+1,则0.98()

A.是这个数列的项,且n=6

B.不是这个数列的项

C.是这个数列的项,且n=7

D.是这个数列的项,且n=7

解析:由n2n2+1=0.98,得0.98n2+0.98=n2,n2=49.n=7(n=-7舍去),故选C.

答案:C

6.若数列{an}的通项公式为an=7(34)2n-2-3(34)n-1,则数列{an}的()

A.最大项为a5,最小项为a6

B.最大项为a6,最小项为a7

C.最大项为a1,最小项为a6

D.最大项为a7,最小项为a6

解析:令t=(34)n-1,nN+,则t(0,1],且(34)2n-2=[(34)n-1]2=t2.

从而an=7t2-3t=7(t-314)2-928.

函数f(t)=7t2-3t在(0,314]上是减函数,在[314,1]上是增函数,所以a1是最大项,故选C.

答案:C

7.若数列{an}的前n项和Sn=32an-3,那么这个数列的通项公式为()

A.an=23n-1 B.an=32n

C.an=3n+3 D.an=23n

解析:

①-②得anan-1=3.

∵a1=S1=32a1-3,

a1=6,an=23n.故选D.

答案:D

8.数列{an}中,an=(-1)n+1(4n-3),其前n项和为Sn,则S22-S11等于()

A.-85 B.85

C.-65 D.65

解析:S22=1-5+9-13+17-21+-85=-44,

S11=1-5+9-13++33-37+41=21,

S22-S11=-65.

或S22-S11=a12+a13++a22=a12+(a13+a14)+(a15+a16)++(a21+a22)=-65.故选C.

答案:C

9.在数列{an}中,已知a1=1,a2=5,an+2=an+1-an,则a2007等于()

A.-4 B.-5

C.4 D.5

解析:依次算出前几项为1,5,4,-1,-5,-4,1,5,4,,发现周期为6,则a2007=a3=4.故选C.

答案:C

10.数列{an}中,an=(23)n-1[(23)n-1-1],则下列叙述正确的是()

A.最大项为a1,最小项为a3

B.最大项为a1,最小项不存在

C.最大项不存在,最小项为a3

D.最大项为a1,最小项为a4

解析:令t=(23)n-1,则t=1,23,(23)2,且t(0,1]时,an=t(t-1),an=t(t-1)=(t-12)2-14.

故最大项为a1=0.

当n=3时,t=(23)n-1=49,a3=-2081;

当n=4时,t=(23)n-1=827,a4=-152729;

又a3

答案:A

二、填空题

11.已知数列{an}的通项公式an=

则它的前8项依次为________.

解析:将n=1,2,3,,8依次代入通项公式求出即可.

答案:1,3,13,7,15,11,17,15

12.已知数列{an}的通项公式为an=-2n2+29n+3,则{an}中的最大项是第________项.

解析:an=-2(n-294)2+8658.当n=7时,an最大.

答案:7

13.若数列{an}的前n项和公式为Sn=log3(n+1),则a5等于________.

解析:a5=S5-S4=log3(5+1)-log3(4+1)=log365.

答案:log365

14.给出下列公式:

①an=sinn

②an=0,n为偶数,-1n,n为奇数;

③an=(-1)n+1.1+-1n+12;

④an=12(-1)n+1[1-(-1)n].

其中是数列1,0,-1,0,1,0,-1,0,的通项公式的有________.(将所有正确公式的序号全填上)

解析:用列举法可得.

答案:①

三、解答题

15.求出数列1,1,2,2,3,3,的一个通项公式.

解析:此数列化为1+12,2+02,3+12,4+02,5+12,6+02,,由分子的规律知,前项组成正自然数数列,后项组成数列1,0,1,0,1,0,.

an=n+1--1n22,

即an=14[2n+1-(-1)n](nN*).

也可用分段式表示为

16.已知数列{an}的通项公式an=(-1)n12n+1,求a3,a10,a2n-1.

解析:分别用3、10、2n-1去替换通项公式中的n,得

a3=(-1)3123+1=-17,

a10=(-1)101210+1=121,

a2n-1=(-1)2n-1122n-1+1=-14n-1.

17.在数列{an}中,已知a1=3,a7=15,且{an}的通项公式是关于项数n的一次函数.

(1)求此数列的通项公式;

(2)将此数列中的偶数项全部取出并按原来的先后顺序组成一个新的数列{bn},求数列{bn}的通项公式.

解析:(1)依题意可设通项公式为an=pn+q,

得p+q=3,7p+q=15.解得p=2,q=1.

{an}的通项公式为an=2n+1.

(2)依题意bn=a2n=2(2n)+1=4n+1,

{bn}的通项公式为bn=4n+1.

18.已知an=9nn+110n(nN*),试问数列中有没有最大项?如果有,求出最大项,如果没有,说明理由.

解析:∵an+1-an=(910)(n+1)(n+2)-(910)n(n+1)=(910)n+18-n9,

当n7时,an+1-an

当n=8时,an+1-an=0;

当n9时,an+1-an0.

a1

故数列{an}存在最大项,最大项为a8=a9=99108.

高二数学多选题题库

很多同学总是抱怨数学学不好,其实是因为试题没有做到位,数学需要大量的练习来帮助同学们理解知识点。以下是我为您整理的关于高二数学下册充要条件单元训练题及答案的相关资料,供您阅读。

高二数学下册充要条件单元训练题及答案

一、选择题(每小题6分,共42分)

1.已知A和B是两个命题,如果A是B的充分但不必要条件,那么 A是 B的( )

A.充分但不必要条件 B.必要但不充分条件

C.充要条件 D.既不充分也不必要条件

答案:B

解析:“A B” “ B A”,“B A”等价于“ A B”.

2.(2010浙江杭州二中模拟,4)“a>2且b>2”是“a+b>4且ab>4”的( )

A.充分非必要条件 B.必要非充分条件

C.充要条件 D.既不充分也不必要条件

答案:A

解析:充分性显然,当a=5,b=1时,有a+b>4,ab>4,但“a>2且b>2”不成立.

3.(2010北京西城区一模,5)设a、b∈R,则“a>b”是“a>|b|”的( )

A.充分非必要条件 B.必要非充分条件

C.充要条件 D.既不是充分条件也不是必要条件

答案:B

解析:a>b并不能得到a>|b|.

如2>-5,但2<|-5|,且a>|b| a>b.故选B.

4.已知条件p:|x|=x,条件q:x2≥-x,则p是q的( )

A.充分不必要条件 B.必要不充分条件

C.充要条件 D.?既不充分也不必要条件

答案:A

解析:p:A={0,1},q:B={x|x≤-1或x≥0}.

∵A B,∴p是q的充分不必要条件.

5.已知真命题:“a≥b是c>d的充分不必要条件”,和“a

A.充分非必要条件 B.必要非充分条件

C.充分必要条件 D.?既不充分也不必要条件

答案:A

解析:“a≥b是c>d的充分不必要条件”等价于“c≤d a

6.(2010全国大联考,2)不等式10成立的( )

A.充分而不必要条件 B.必要而不充分条件

C.充要条件 D.?即不充分也不必要条件

答案:A

解析:当10,tanx>0,?即tan(x-1)tanx>0,但当x= 时,(x-1)tanx=( -1)×1>0,而 (1, ),故选A.

7.已知抛物线y=ax2+bx+c(a>0,b,c∈R)则“关于x的不等式ax2+bx+c

A.充分不必要条件 B.必要不充分条件

C.充要条件 D.既不充分又不必要条件

答案:B

解析:ax2+bx+c0,顶点(- )在直线y=x下方 - (b-1)2>4ac+1,故选B.

二、填空题(每小题5分,共15分)

8.方程3x2-10x+k=0有两个同号且不相等的实根的充要条件是______________.

答案:0

解析:其充要条件为 0

9.已知p:|x+1|>2和q: >0,则 p是 q的__________________.(填“充分不必要”“必要不充分”“充要条件”“既不充分又不必要?条件”)

答案:充分不必要

解析:∵p:x<-3或x>1,

q:x<-4或x>1,

∴ p:-3≤x≤1, q:-4≤x≤1.

∴ p是 q的充分不必要条件.

10.给出下列各组p与q:

(1)p:x2+x-2=0,q:x=-2;

(2)p:x=5,q:x>-3;

(3)p:内错角相等,q:两条直线互相平行;

(4)p:两个角相等,q:两个角是对顶角;

(5)p:x∈M,且x∈P,q:x∈M∪P(P,M≠ ).

其中p是q的充分不必要条件的组的序号是_____________________.

答案:(2)(5)

解析:(1)(4)中p是q的必要不充分条件;?(3)中p是q的充要条件;(2)(5)满足题意.

三、解答题(11—13题每小题10分,14题13分,共43分)

11.设x、y∈R,求证:|x+y|=|x|+|y|成立的充要条件是xy≥0.

证明:充分性:如果xy=0,那么①x=0,y≠0;②y=0,x≠0;③x=0,y=0.于是|x+y|=|x|+|y|.

如果xy>0,即x>0,y>0或x<0,y<0.

当x>0,y>0时,|x+y|=x+y=?|x|+|y|?;

当x<0,y<0时,|x+y|=-(x+y)=-x+(-y)=|x|+|y|.总之,当xy≥0时,有|x+y|=|x|+|y|.

必要性:解法一:由|x+y|=|x|+|y|及x,y∈R,得(x+y)2=(|x|+|y|)2,即x2+2xy+y2=x2+2|xy|+y2,|xy|=xy,∴xy≥0.

解法二:|x+y|=|x|+|y| (x+y)2=(|x|+|y|)2 x2+y2+2xy=x2+y2+2|xy| xy=|xy| xy≥0.

12.已知a,b是实数,求证:a4-b4=1+2b2成立的充分条件是a2-b2=1,该条件是否是必要条件?证明你的结论.

证明:该条件是必要条件.

当a2-b2=1即a2=b2+1时,

a4-b4=(b2+1)2-b4=2b2+1.

∴a4-b4=1+2b2成立的充分条件是a2-b2=1又a4-b4=1+2b2,故a4=(b2+1)2.

∴a2=b2+1,即a2-b2=1故该条件是必要条件.

13.已知关于x的方程:(a-6)x2-(a+2)x-1=0.(a∈R),求方程至少有一负根的充要条件.

解析:∵当a=6时,原方程为8x=-1,有负根x=- .

当a≠6时,方程有一正根,一负根的充要条件是:x1x2=- <0,即a>6.

方程有两负根的充要条件是:

即2≤a<6.

∴方程至少有一负根的充要条件是:2≤a<6或a=6或a>6,即a≥2.

14.(1)是否存在实数p,使“4x+p<0”是“x2-x-2>0”的充分条件?如果存在,求出p的取值范围;

(2)是否存在实数p,使“4x+p<0”是“x2-x-2>0”的必要条件?如果存在,求出p的取值范围.

解析:(1)当x>2或x<-1时,x2-x-2>0,

由4x+p<0得x<- ,故- ≤-1时,

“x<- ” “x<-1” “x2-x-2>0”.

∴p≥4时,“4x+p<0”是“x2-x-2>0”的充分条件.

以上就是高二数学试卷及答案的全部内容,一、单选题 1.已知,则下列不等式中成立的是()A.B.C.D.【答案】D 【解析】根据不等式的基本性质,逐一分析四个不等式关系是否恒成立,可得答案.【详解】解:,,故错误;两边同除得:,故错误;。

猜你喜欢