数学不等式公式?四个基本不等式公式:1、a²+b²≥2ab。(当且仅当a=b时,等号成立)2、√(ab)≤(a+b)/2。(当且仅当a=b时,等号成立)3、a+b≥2√(ab)。(当且仅当a=b时,等号成立)4、那么,数学不等式公式?一起来了解一下吧。
四个基本不等式公式如下:
四个基本不等式公式:
1、a²+b²≥2ab。(当且仅当a=b时,等号成立)
2、√(ab)≤(a+b)/2。(当且仅当a=b时,等号成立)
3、a+b≥2√(ab)。(当且仅当a=b时,等号成立)
4、ab≤[(a+b)/2]²。(当且仅当a=b时,等号成立)。
基本不等式的定义:
基本不等式是主要应用于求某些函数的最值及证明的不等式。其表述为:两个正实数的算术平均数大于或等于它们的几何平均数。
基本不等式的运用技巧:
1、“1”的妙用。题目中如果出现了两个式子之和为常数,要求这两个式子的倒数之和的最小值,通常用所求这个式子乘以1,然后把1用前面的常数表示出来,并将两个式子展开即可计算。如果题目已知两个式子倒数之和为常数,求两个式子之和的最小值,方法同上。
2、调整系数。有时候求解两个式子之积的最大值时,需要这两个式子之和为常数,但是很多时候并不是常数,这时候需要对其中某些系数进行调整,以便使其和为常数。
不等式的定义与性质:
不等式的定义:
从最基本的定义上来说,不等式是一个表达式,它代表着两个数字、表达式或者变量之间的大小关系。
基本不等式是数学中常用的不等式关系,包括四个基本的不等式公式:算术平均-几何平均不等式、均值不等式、柯西-施瓦茨不等式和三角不等式。
1.算术平均-几何平均不等式(AM-GM Inequality)
算术平均-几何平均不等式是指对于非负实数的任意一组数,其算术平均值不小于它们的几何平均值。数学表达式如下:
对于非负实数a1,a2,…,an,有:(a1+a2+…+an)/n≥∛(a1×a2×…×an)这一不等式告诉我们,对于一组非负实数,它们的算术平均值不小于它们的几何平均值,且当且仅当这些数相等时等号成立。
2.均值不等式(Mean Inequality)
均值不等式是表示一组数据的平方均值不小于它们的算术平均值。常见的均值不等式有平方均值不小于算术平均值的平方和立方均值不小于平方均值的平方等。数学表达式如下:
对于非负实数a1,a2,…,an,有:√((a1^2+a2^2+…+an^2)/n)≥(a1+a2+…+an)/n这个不等式告诉我们,对于一组非负实数,它们的平方均值不小于它们的算术平均值,当且仅当这些数相等时等号成立。
如下:
1、均值不等式:均值不等式,又称为平均值不等式、平均不等式,是数学中的一个重要公式。公式内容为Hn≤Gn≤An≤Qn,即调和平均数不超过几何平均数,几何平均数不超过算术平均数,算术平均数不超过平方平均数。
2、伯努利不等式:对任意的正整数n>1,以及任意的x>-1,有证明:采用数学归纳法:n=1时,不等式明显成立,我们假设当n=k-1时,不等式成立。
3、绝对值不等式公式:在不等式应用中,经常涉及质量、面积、体积等,也涉及某些数学对象(如实数、向量)的大小或绝对值。它们都是通过非负数来度量的。公式:||a|-|b|| ≤|a±b|≤|a|+|b|。
4、二项式展开式:二项展开式是依据二项式定理对(a+b)n进行展开得到的式子,由艾萨克·牛顿于1664-1665年间提出。二项展开式是高考的一个重要考点。
在二项式展开式中,二项式系数是一些特殊的组合数,与术语“系数”是有区别的。二项式系数最大的项是中间项,而系数最大的项却不一定是中间项。
基本不等式√ab≦(a+b)/2、a^2+b^2≧2ab、b/a+a/b≧2。
用符号“>”“<”表示大小关系的式子,叫作不等式。用“≠”表示不等关系的式子也是不等式。
高中6个基本不等式的公式有a^2+b^2≧2ab、√ab≦(a+b)/2、b/a+a/b≧2、(a+b+c)/3≧³√abc、a^3+b^3+c^3≧3abc、柯西不等式。
1、基本不等式a^2+b^2≧2ab:
针对任意的实数a,b都成立,当且仅当a=b时,等号成立。
证明的过程:因为(a-b)^2≧0,展开的a^2+b^2-2ab≧0,将2ab右移就得到了公式a^2+b^2≧2ab。
它的几何意义就是一个正方形的面积大于等于这个正方形内四个全等的直角三角形的面积和。
2、基本不等式√ab≦(a+b)/2:
这个不等式需a,b均大于0,等式才成立,当且仅当a=b时等号成立。
证明过程:要证(a+b)/2≧√ab,只证a+b≧2√ab,只要能证(√a-√b)^2≧0,明显(√a-√b)^2≧0是成立的。
它的几何意义是圆内的直径大于被弦截后得到直径的2个部分的乘积的二倍。
3、b/a+a/b≧2:
这个不等式的要求ab>0,当且仅当a=b时等号成立,其实就是常说的说a,b可以同时为正数,也可同时为负数。
证明的过程:b/a+a/b(a^2+b^2)/ab≧2,只要能证a^2+b^2≧2ab就可以。
以上就是数学不等式公式的全部内容,基本不等式的拓展公式,a,b,c都是正数。5、(a+b+c)/3≧³√abc:a,b,c都是正数,当且仅当a=b=c时等号成立。6、柯西不等式。高一数学基本不等式公式:假设a,b是正数,既然如此那。