高等数学常用公式?完全平方公式:(a+b)2=a2+2ab+b2^。求导法则:(u±v)′=u′±v′,(uv)′=u′v+uv′,(u/v)′=(u′v-uv′)/v²^。积分公式:∫(0,x)f(t)dt=F(x)-F(0),∫(a,那么,高等数学常用公式?一起来了解一下吧。
高数基本公式如下:
1、y=c(c为常数) y'=0
2、y=x^n y'=nx^(n-1)
3、y=a^x y'=a^xlna,y=e^x y'=e^x
4、y=logax y'=logae/x,y=lnx y'=1/x
5、y=sinx y'=cosx
6、y=cosx y'=-sinx
7、y=tanx y'=1/cos^2x
8、y=cotx y'=-1/sin^2x
9、y=arcsinx y'=1/√1-x^2
10、y=arccosx y'=-1/√1-x^2
导数的求导法则:
由基本函数的和、差、积、商或相互复合构成的函数的导函数则可以通过函数的求导法则来推导。基本的求导法则如下:
1、求导的线性:对函数的线性组合求导,等于先对其中每个部分求导后再取线性组合(即①式)。
2、两个函数的乘积的导函数:一导乘二+一乘二导(即②式)。
3、两个函数的商的导函数也是一个分式:(子导乘母-子乘母导)除以母平方(即③式)。
4、如果有复合函数,则用链式法则求导。
高数是指相对于初等数学而言,数学的对象及方法较为繁杂的一部分。高数是高等数学的简称,通常认为,高等数学是由微积分学,较深入的代数学、几何学以及它们之间的交叉内容所形成的一门基础学科。
1、∫tanxdx=−lncosx+C
2、∫ cot x d x = ln sin x + C \int \cot x dx = \ln \sin x + C∫cotxdx=lnsinx+C
3、∫ sec x d x = ln sec x + tan x + C \int \sec x dx = \ln \sec x + \tan x + C∫secxdx=lnsecx+tanx+C
4、∫ csc x d x = − ln csc x − cot x + C \int \csc x dx = - \ln \csc x - \cot x + C∫cscxdx=−lncscx−cotx+C
5、∫ d x cos 2 x d x = ∫ sec 2 x d x = tan x + C \int \frac{dx}{\cos ^ 2 x} dx = \int \sec ^ 2 x dx = \tan x + C∫cos2xdxdx=∫sec2xdx=tanx+C
6、∫ d x sin 2 x d x = ∫ csc 2 x d x = − cot x + C \int \frac{dx}{\sin ^ 2 x} dx = \int \csc ^ 2 x dx = -\cot x + C∫sin2xdxdx=∫csc2xdx=−cotx+C
扩展资料
高等数学特点
作为一门基础科学,高等数学有其固有的特点,这就是高度的抽象性、严密的逻辑性和广泛的应用性。
高等数学常用公式如下:
1、平方差公式:x2−y=(x−y)(x+y)^。完全平方公式:(a+b)2=a2+2ab+b2^。求导法则:(u±v)′=u′±v′,(uv)′=u′v+uv′,(u/v)′=(u′v-uv′)/v²^。积分公式:∫(0,x)f(t)dt=F(x)-F(0),∫(a,b)f(x)dx=(a,b)F(x)dx^。
2、泰勒展开式:这个公式用于将一个函数表示为无限项之和,每项都是函数在某点的导数。例如,f(x)=f(a)+f'(a)(x-a)+f''(a)(x-a)²/2!+...+f(n)(a)(x-a)^n/n!+...。求导法则:这些公式用于计算函数的导数。例如,(u±v)′=u′±v′,(uv)′=u′v+uv′。
3、积分公式:这些公式用于计算定积分和不定积分。例如,∫(0,x)f(t)dt=F(x)-F(0),其中F(x)是f(t)的原函数;∫(a,b)f(x)dx=(a,b)F(x)dx,其中F(x)是(x)的原函数。
4、格林公式:格林公式是一个重要的积分公式,用于计算二维平面上的曲线积分。它的一般形式是∮(ax+by)dx+(cx+dy)dy=(b-a)∮Ady+(c-d)∮Bdx,其中A和B是两个无穷小曲线,方向与被积曲线相反。
高等数学基本公式如下:
求导公式:(u+v)'=u'+v';(u-v)'=u'-v';(uv)'=u'v+uv'。
求积分公式:∫(上限a,下限b)kdx=k(x)(上限a,下限b)=ka-kb;∫(上限a,下限b)udx=u(上限a,下限b)+C;∫(上限a,下限b)f(x)dx=F(x)(上限a,下限b)+C,其中F(x)是f(x)的原函数。
微分方程公式:dy/dx=f(x,y);d²y/dx²=f'(x,y);d³y/dx³=f''(x,y)。
学习高等数学的作用
首先,对于个人而言,学习高等数学有助于提升思维能力。高等数学中的符号化语言、抽象思维和逻辑推理,可以帮助人们更好地理解事物的本质,提高思维深度和广度。这不仅对数学学科的学习至关重要,而且对其他学科,如物理、化学、工程、经济等的学习和理解也大有裨益。
其次,高等数学的学习有助于培养人的创新精神。高等数学是一门充满挑战和探索的学科,它鼓励人们去思考、去质疑、去创新。通过解决数学问题,人们可以培养出一种独立思考和解决问题的能力,这在当今快速发展的社会中是非常重要的。
此外,高等数学的学习还有助于提高人的综合素质。
一、sinh-1 x dx = x sinh-1 x-+ C
二、cosh-1 x dx = x cosh-1 x-+ C
三、tanh-1 x dx = x tanh-1 x+ ln | 1-x2|+ C
四、coth-1 x dx = x coth-1 x- ln | 1-x2|+ C
五、sech-1 x dx = x sech-1 x- sin-1 x + C
六、csch-1 x dx = x csch-1 x+ sinh-1 x + C
七、sin 3θ=3sinθ-4sin3θ
八、cos3θ=4cos3θ-3cosθ
九、→sin3θ= (3sinθ-sin3θ)
十、→cos3θ= (3cosθ+cos3θ)
十一、sin (α±β)=sin α cos β ± cos α sin β
十二、cos (α±β)=cos α cos β sin α sin β
十三、2 sin α cos β = sin (α+β) + sin (α-β)
十四、2 cos α sin β = sin (α+β) - sin (α-β)
十五、2 cos α cos β = cos (α-β) + cos (α+β)
十六、2 sin α sin β = cos (α-β) - cos (α+β)
十七、sin α + sin β = 2 sin (α+β) cos (α-β)
十八、sin α - sin β = 2 cos (α+β) sin (α-β)
十九、cos α + cos β = 2 cos (α+β) cos (α-β)
二十、cos α - cos β = -2 sin (α+β) sin (α-β)
以上就是高等数学常用公式的全部内容,高等数学基本公式如下:求导公式:(u+v)'=u'+v';(u-v)'=u'-v';(uv)'=u'v+uv'。求积分公式:∫(上限a,下限b)kdx=k(x)(上限a,下限b)=ka-kb;∫(上限a,下限b)udx=u(上限a。