八下数学函数?一、正比例函数与一次函数的概念: 一般地,形如y=kx(k为常数,且k≠0)的函数叫做正比例函数.其中k叫做比例系数。 一般地,形如y=kx+b(k,b为常数,且k≠0)的函数叫做一次函数. 当b=0时,y=kx+b即为y=kx,所以正比例函数,是一次函数的特例. 二、那么,八下数学函数?一起来了解一下吧。
学习需要制定详细的计划,计划本身对大家有较强的约束和督促作用,计划对学习既有指导作用,又有推动作用。制定好的学习计划,是提高工作效率的重要手段。下面是我给大家整理的一些 八年级 数学的知识点,希望对大家有所帮助。
初二数学下册知识点归纳
一次函数
一、正比例函数与一次函数的概念:
一般地,形如y=kx(k为常数,且k≠0)的函数叫做正比例函数.其中k叫做比例系数。
一般地,形如y=kx+b(k,b为常数,且k≠0)的函数叫做一次函数.
当b=0时,y=kx+b即为y=kx,所以正比例函数,是一次函数的特例.
二、正比例函数的图象与性质:
(1)图象:正比例函数y=kx(k是常数,k≠0))的图象是经过原点的一条直线,我们称它为直线y=kx。
(2)性质:当k>0时,直线y=kx经过第三,一象限,从左向右上升,即随着x的增大y也增大;当k0,b>0图像经过一、二、三象限;
(2)k>0,b<0图像经过一、三、四象限;
(3)k>0,b=0图像经过一、三象限;
(4)k<0,b>0图像经过一、二、四象限;
(5)k<0,b<0图像经过二、三、四象限;
(6)k<0,b=0图像经过二、四象限。
根据第一个已知条件 令X=0 则颂蚂Y=2 也即A(0,2) 再根据第二个已知条件 令Y=0 则X=2 也即B(2,0)拍隐 那么直线方程就可以写野贺埋出来了y=-x+2
一次函数 y=kx+b(k、b为常数,k≠0)
正比世誉孙拍例函数 y=kx(搜凯段k为常数,k≠0)
数学思维导图便是一种很好的教学方法,能促进建构性学习和知识整合,从而提高学习效率。今天我为大家带来了八年级下的数学思维导图,一起来看看吧!
八年级下的数学思维导图汇总
八年级数学下册《反比例函数》知识点整理
1.定义:形如y= (k为常数,k≠0)的函数称为反比例函销丛数。
2.其他形式 xy=k (k为常数,k≠0)都是。
3.图像:反比例函数的图像属于双曲线。
反比例函数的图亏孝樱象既是轴对称图形又是中心对称图形。
有两条慎清对称轴:直线y=x和 y=-x。 对称中心是:原点
3.性质:当k>0时双曲线的两支分别位于第一、第三象限,在每个象限内y值随x值的增大而减小。
当k<0时双曲线的两支分别位于第二、第四象限,在每个象限内y值随x值的增大而增大。
4.|k|的几何意义:表示反比例函数图像上的点向两坐标轴
所作的垂线段与两坐标轴围成的矩形的面积。
八年级数学下册勾股定理知识点总结
1.勾股定理:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a2+b2=c2。
2.勾股定理逆定理:如果三角形三边长a,b,c满足a2+b2=c2。,那么这个三角形是直角三角形。
3.经过证明被确认正确的命题叫做定理。
B点卜梁卜的坐标为:(渣拍2,0)
A的坐标为:(0,2)
由A,B两点 的坐标可以求得直线AB的表型穗达式为:
斜率k=(2-0)/(0-2)= -1
表达式为:y = -x+2
以上就是八下数学函数的全部内容,八年级下的数学思维导图汇总 八年级数学下册《反比例函数》知识点整理 1.定义:形如y= (k为常数,k≠0)的函数称为反比例函数。2.其他形式 xy=k (k为常数,k≠0)都是。3.图像:反比例函数的图像属于双曲线。反比例函数的图象既是轴对称图形又是中心对称图形。