考点: 一元一次不等式组的整数解.
分析:首先确定不等式组的解集,利用含a的式子表示,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于a的不等式,从而求出a的范围.
解答: 解:解不等式组得:2
∵不等式组的整数解共有3个,
∴这3个是3,4,5,因而5≤a<6.
故选C.
点评:本题考查了一元一次不等式组的整数解,正确解出不等式组的解集,确定a的范围,是解答本题的关键.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.
二、填空题(本题共8小题,每小题3分,共24分)
11.(3分)(2009?恩施州)9的算术平方根是3.
考点: 算术平方根.
分析: 如果一个非负数x的平方等于a,那么x是a的算术平方根,根据此定义即可求出结果.
解答: 解:∵32=9,
∴9算术平方根为3.
故答案为:3.
点评: 此题主要考查了算术平方根的等于,其中算术平方根的概念易与平方根的概念混淆而导致错误.
12.(3分)把命题“在同一平面内,垂直于同一条直线的两条直线互相平行”写出“如果…,那么…”的形式是:在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线互相平行.
考点: 命题与定理.
分析: 根据命题题设为:在同一平面内,两条直线都垂直于同一条直线;结论为这两条直线互相平行得出即可.
解答:解:“在同一平面内,垂直于同一条直线的两条直线互相平行”改写成“如果﹣﹣﹣,那么﹣﹣﹣”的形式为:“在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线互相平行”.
故答案为:两条直线都垂直于同一条直线,这两条直线互相平行.
点评:本题考查了命题与定理:判断事物的语句叫命题,命题由题设和结论两部分组成;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.
13.(3分)将方程2x+y=25写成用含x的代数式表示y的形式,则y=25﹣2x.
考点: 解二元一次方程.
分析: 把方程2x+y=25写成用含x的式子表示y的形式,需要把含有y的项移到方程的左边,其它的项移到另一边即可.
解答: 解:移项,得y=25﹣2x.
点评: 本题考查的是方程的基本运算技能,表示谁就该把谁放到方程的左边,其它的项移到另一边.
此题直接移项即可.
14.(3分)不等式x+4>0的最小整数解是﹣3.
考点: 一元一次不等式的整数解.
分析: 首先利用不等式的基本性质解不等式,再从不等式的解集中找出适合条件的正整数即可.
解答: 解:x+4>0,
x>﹣4,
则不等式的解集是x>﹣4,
故不等式x+4>0的最小整数解是﹣3.
故答案为﹣3.
点评: 本题考查了一元一次不等式的整数解,正确解不等式,求出解集是解答本题的关键.解不等式应根据不等式的基本性质.
15.(3分)某校在“数学小论文”评比活动中,共征集到论文60篇,并对其进行了评比、整理,分成组画出频数分布直方图(如图),已知从左到右5个小长方形的高的比为1:3:7:6:3,那么在这次评比中被评为优秀的论文有(分数大于或等于80分为优秀且分数为整数)27篇.
考点: 频数(率)分布直方图.
分析:根据从左到右5个小长方形的高的比为1:3:7:6:3和总篇数,分别求出各个方格的篇数,再根据分数大于或等于80分为优秀且分数为整数,即可得出答案.
解答: 解:∵从左到右5个小长方形的高的比为1:3:7:6:3,共征集到论文60篇,
∴第一个方格的篇数是: ×60=3(篇);
第二个方格的篇数是: ×60=9(篇);
第三个方格的篇数是: ×60=21(篇);
第四个方格的篇数是: ×60=18(篇);
第五个方格的篇数是: ×60=9(篇);
∴这次评比中被评为优秀的论文有:9+18=27(篇);
故答案为:27.
点评:本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.
16.(3分)我市A、B两煤矿去年计划产煤600万吨,结果A煤矿完成去年计划的115%,B煤矿完成去年计划的120%,两煤矿共产煤710万吨,求去年A、B两煤矿原计划分别产煤多少万吨?设A、B两煤矿原计划分别产煤x万吨,y万吨;请列出方程组.
考点: 由实际问题抽象出二元一次方程组.
分析:利用“A、B两煤矿去年计划产煤600万吨,结果A煤矿完成去年计划的115%,B煤矿完成去年计划的120%,两煤矿共产煤710万吨”列出二元一次方程组求解即可.
解答: 解:设A矿原计划产煤x万吨,B矿原计划产煤y万吨,根据题意得:
,
故答案为:: ,
点评: 本题考查了由实际问题抽象出二元一次方程组的知识,解题的关键是从题目中找到两个等量关系,这是列方程组的依据.
17.(3分)在平面直角坐标系中,已知线段AB∥x轴,端点A的坐标是(﹣1,4)且AB=4,则端点B的坐标是(﹣5,4)或(3,4).
考点: 坐标与图形性质.
分析: 根据线段AB∥x轴,则A,B两点纵坐标相等,再利用点B可能在A点右侧或左侧即可得出答案.
解答: 解:∵线段AB∥x轴,端点A的坐标是(﹣1,4)且AB=4,
∴点B可能在A点右侧或左侧,
则端点B的坐标是:(﹣5,4)或(3,4).
故答案为:(﹣5,4)或(3,4).
点评: 此题主要考查了坐标与图形的性质,利用分类讨论得出是解题关键.
18.(3分)若点P(x,y)的坐标满足x+y=xy,则称点P为“和谐点”,如:和谐点(2,2)满足2+2=2×2.请另写出一个“和谐点”的坐标(3,).
考点: 点的坐标.
专题: 新定义.
分析: 令x=3,利用x+y=xy可计算出对应的y的值,即可得到一个“和谐点”的坐标.
解答: 解:根据题意得点(3, )满足3+ =3× .
故答案为(3, ).
点评:本题考查了点的坐标平面内的点与有序实数对是一一对应的关系.坐标:直角坐标系把平面分成四部分,分别叫第一象限,第二象限,第三象限,第四象限.坐标轴上的点不属于任何一个象限.
三、解答题(本大题共46分)
19.(6分)解方程组 .
考点: 解二元一次方程组.
分析: 先根据加减消元法求出y的值,再根据代入消元法求出x的值即可.
解答: 解: ,
①×5+②得,2y=6,解得y=3,
把y=3代入①得,x=6,
故此方程组的解为 .
点评: 本题考查的是解二元一次方程组,熟知解二元一次方程组的加减消元法和代入消元法是解答此题的关键.
20.(6分)解不等式: ,并判断 是否为此不等式的解.
考点: 解一元一次不等式;估算无理数的大小.
分析: 首先去分母、去括号、移项合并同类项,然后系数化成1即可求得不等式的解集,然后进行判断即可.
解答: 解:去分母,得:4(2x+1)>12﹣3(x﹣1)
去括号,得:8x+4>12﹣3x+3,
移项,得,8x+3x>12+3﹣4,
合并同类项,得:11x>11,
系数化成1,得:x>1,
∵ >1,
∴ 是不等式的解.
点评: 本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.
解不等式要依据不等式的基本性质,在不等式的两边同时加上或减去同一个数或整式不等号的方向不变;在不等式的两边同时乘以或除以同一个正数不等号的方向不变;在不等式的两边同时乘以或除以同一个负数不等号的方向改变.
21.(6分)学着说点理,填空:
如图,AD⊥BC于D,EG⊥BC于G,∠E=∠1,可得AD平分∠BAC.
理由如下:
∵AD⊥BC于D,EG⊥BC于G,(已知)
∴∠ADC=∠EGC=90°,(垂直定义)
∴AD∥EG,(同位角相等,两直线平行)
∴∠1=∠2,(两直线平行,内错角相等)
∠E=∠3,(两直线平行,同位角相等)
又∵∠E=∠1(已知)
∴∠2=∠3(等量代换)
∴AD平分∠BAC(角平分线定义)
考点: 平行线的判定与性质.
专题: 推理填空题.
分析: 根据垂直的定义及平行线的性质与判定定理即可证明本题.
解答: 解:∵AD⊥BC于D,EG⊥BC于G,(已知)
∴∠ADC=∠EGC=90°,(垂直定义)
∴AD∥EG,(同位角相等,两直线平行)
∴∠1=∠2,(两直线平行,内错角相等)
∠E=∠3,(两直线平行,同位角相等)
又∵∠E=∠1(已知)
∴∠2=∠3(等量代换)
∴AD平分∠BAC(角平分线定义 ).
点评: 本题考查了平行线的判定与性质,属于基础题,关键是注意平行线的性质和判定定理的综合运用.
22.(8分)在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC的顶点A、C的坐标分别为(﹣4,5),(﹣1,3).
(1)请在如图所示的网格平面内作出平面直角坐标系;
(2)请把△ABC先向右移动5个单位,再向下移动3个单位得到△A′B′C′,在图中画出△A′B′C′;
(3)求△ABC的面积.
考点: 作图-平移变换.
分析: (1)根据A点坐标,将坐标轴在A点平移到原点即可;
(2)利用点的坐标平移性质得出A,′B′,C′坐标即可得出答案;
(3)利用矩形面积减去周围三角形面积得出即可.
解答: 解:(1)∵点A的坐标为(﹣4,5),
∴在A点y轴向右平移4个单位,x轴向下平移5个单位得到即可;(2)如图所示:△A′B′C′即为所求;(3)△ABC的面积为:3×4﹣ ×3×2﹣×1×2﹣ ×2×4=4.
点评: 此题主要考查了平移变换以及三角形面积求法和坐标轴确定方法,正确平移顶点是解题关键.
23.(10分)我市中考体育测试中,1分钟跳绳为自选项目.某中学九年级共有若干名女同学选考1分钟跳绳,根据测试评分标准,将她们的成绩进行统计后分为A、B、C、D四等,并绘制成下面的频数分布表(注:5~10的意义为大于等于5分且小于10分,其余类似)和扇形统计图(如图).
等级 分值 跳绳(次/1分钟) 频数
A 12.5~15 135~160 m
B 10~12.5 110~135 30
C 5~10 60~110 n
D 0~5 0~60 1
(1)m的值是14,n的值是30;
(2)C等级人数的百分比是10%;
(3)在抽取的这个样本中,请说明哪个分数段的学生最多?
(4)请你帮助老师计算这次1分钟跳绳测试的及格率(10分以上含10分为及格).
考点: 扇形统计图;频数(率)分布表.
分析: (1)首先根据B等级的人数除以其所占的百分比即可求得总人数,然后乘以28%即可求得m的值,总人数减去其他三个小组的频数即可求得n的值;
(2)用n值除以总人数即可求得其所占的百分比;
(3)从统计表的数据就可以直接求出结论;
(4)先计算10分以上的人数,再除以50乘以100%就可以求出结论.
解答: 解:(1)观察统计图和统计表知B等级的有30人,占60%,
∴总人数为:30÷60%=50人,
∴m=50×28%=14人,
n=50﹣14﹣30﹣1=5;(2)C等级所占的百分比为: ×100%=10%;(3)B等级的人数最多;(4)及格率为: ×100%=88%.
点评: 本题考查了频数分布表的运用,扇形统计图的运用,在解答时看懂统计表与统计图得关系式关键.
24.(10分)(2012?益阳)为响应市政府“创建国家森林城市”的号召,某小区计划购进A、B两种树苗共17棵,已知A种树苗每棵80元,B种树苗每棵60元.
(1)若购进A、B两种树苗刚好用去1220元,问购进A、B两种树苗各多少棵?
(2)若购买B种树苗的数量少于A种树苗的数量,请你给出一种费用最省的方案,并求出该方案所需费用.
考点: 一元一次不等式的应用;一元一次方程的应用.
专题: 压轴题.
分析: (1)假设购进A种树苗x棵,则购进B种树苗(17﹣x)棵,利用购进A、B两种树苗刚好用去1220元,结合单价,得出等式方程求出即可;
(2)结合(1)的解和购买B种树苗的数量少于A种树苗的数量,可找出方案.
解答: 解:(1)设购进A种树苗x棵,则购进B种树苗(17﹣x)棵,根据题意得:
80x+60(17﹣x )=1220,
解得:x=10,
∴17﹣x=7,
答:购进A种树苗10棵,B种树苗7棵;(2)设购进A种树苗x棵,则购进B种树苗(17﹣x)棵,
根据题意得:
17﹣x
解得:x> ,
购进A、B两种树苗所需费用为80x+60(17﹣x)=20x+1020,
则费用最省需x取最小整数9,
此时17﹣x=8,
这时所需费用为20×9+1020=1200(元).
答:费用最省方案为:购进A种树苗9棵,B种树苗8棵.这时所需费用为1200元.
点评: 此题主要考查了一元一次不等式组的应用以及一元一次方程应用,根据一次函数的增减性得出费用最省方案是解决问题的关键.
七年级下册数学试卷及答案相关文章:
★七年级数学下册复习题答案
★七年级数学下册期末试卷题
★人教版七年级下数学期末试卷
★七年级下册苏科版数学期末测试卷
★2020七年级下数学复习重点试题
★七年级下数学练习册答案
★人教版七年级数学下册课本练习题答案
★七年级数学单元测试题
★七年级数学下册练习册参考答案
★2020七年级下册数学复习题
七年级数学卷子可打印
此刻打盹,你将做梦;而此刻学习,你将圆梦。我在这里支持着你,鼓励着你,为你祝福!祝:七年级数学期末考试时能超水平发挥。下面是我为大家精心整理的七年级上册数学人教版期末试卷,仅供参考。
七年级上册数学人教版期末试题
一、选择题:本大题共有10小题,每小题2分,共20分.
1. 的相反数是()
A.﹣ B. C.﹣2 D.2
2.﹣6的绝对值等于()
A.6 B. C.﹣ D.﹣6
3.多项式3x2﹣xy2 是()
A.二次四项式 B.三次三项式 C.四次四项式 D.三次四项式
4.已知下列方程:其中一元一次方程有()
①x﹣2= ;②0.2x﹣2=1;③ ;④x2﹣3x﹣4=0;⑤2x=0;⑥x﹣y=6.
A.2个 B.3个 C.4个 D.5个
5.方程3x+2(1﹣x)=4的解是()
A.x= B.x= C.x=2 D.x=1
6.若实数a,b,c在数轴上对应点的位置如图所示,则下列不等式成立的是()
A.ac>bc B.ab>cb C.a+c>b+c D.a+b>c+b
7.若关于x的方程2x﹣4=3m与方程 =﹣5有相同的解,则m的值是()
A.10 B.﹣8 C.﹣10 D.8
8.下列几何语言描述正确的是()
A.直线mn与直线ab相交于点D B.点A在直线M上
C.点A在直线AB上 D.延长直线AB
9.一件衣服标价132元,若以9折降价出售,仍可获利10%,则这件衣服的进价是()
A.106元 B.105元 C.118元 D.108元
10.如图是一个三棱柱.下列图形中,能通过折叠围成一个三棱柱的是()
A. B. C. D.
二、填空题:本大题共6小题,每小题3分,共18分.
11.2013年4月20日,四川省雅安市芦山县发生7.0级地震.我市爱心人士情系灾区,积极捐款,截止到5月6日,市红十字会共收到捐款约1400000元,这个数据用科学记数法可表示为元.
12.计算:﹣(﹣1)2=.
13.学校购买了一批图书,共a箱,每箱有b册,将这批图书的一半捐给社区,则捐给社区的图书为册(用含a、b的代数式表示).
14.已知在月历中竖列上三个数的和是45,则这三个数中最小的数是.
15.如图,C、D为线段AB上的任意两点,那么图中共有条线段.
16.如图,射线OA表示的方向是.
三、解答题:本题共7题,共62分.
17.计算:
(1)12+(﹣17)﹣(﹣23)
(2) .
18.计算:
(1)﹣72+2×
(2)﹣14 .
19.化简:(1)5a2+3ab﹣4﹣2ab﹣5a2 (2)﹣x+2(2x﹣2)﹣3(3x+5)
20.计算:
(1)7(3﹣x)﹣5(x﹣3)=8
(2) .
21.已知线段AC=8cm,点B是线段AC的中点,点D是线段BC的中点,求线段AD的长.
22.汽车上坡时每小时走28km,下坡时每小时走35km,去时,下坡路的路程比上坡路的路程的2倍还少14km,原路返回比去时多用了12分钟.求去时上、下坡路程各多少千米?
23.如图,已知同一平面内,∠AOB=90゜,∠AOC=60゜.
(1)填空:∠COB=;
(2)如OD平分∠BOC,OE平分∠AOC,直接写出∠DOE的度数为;
(3)试问在(2)的条件下,如果将题目中∠AOC=60゜改成∠AOC=2α(α<45゜),其他条件不变,你能求出∠DOE的度数吗?若能,请你写出求解过程;若不能,请说明理由.
七年级上册数学人教版期末试卷参考答案
一、选择题:本大题共有10小题,每小题2分,共20分.
1. 的相反数是()
A.﹣ B. C.﹣2 D.2
【考点】相反数.
【专题】常规题型.
【分析】根据只有符号不同的两个数互为相反数解答.
【解答】解: 的相反数是﹣ .
故选A.
【点评】本题主要考查了互为相反数的定义,是基础题,熟记概念是解题的关键.
2.﹣6的绝对值等于()
A.6 B. C.﹣ D.﹣6
【考点】绝对值.
【专题】计算题.
【分析】根据绝对值的性质解答即可.
【解答】解:根据绝对值的性质,
|﹣6|=6,
故选:A.
【点评】本题考查了绝对值的性质:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0,难度适中.
3.多项式3x2﹣xy2 是()
A.二次四项式 B.三次三项式 C.四次四项式 D.三次四项式
【考点】多项式.
【分析】根据多项式的项和次数的概念解题即可.
【解答】解:多项式3x2﹣xy2 是三次四项式,
故选D
【点评】此题主要考查了多项式,此类题目时要明确以下概念:
(1)组成多项式的每个单项式叫做多项式的项;(2)多项式中次数最高项的次数叫做多项式的次数.
4.已知下列方程:其中一元一次方程有()
①x﹣2= ;②0.2x﹣2=1;③ ;④x2﹣3x﹣4=0;⑤2x=0;⑥x﹣y=6.
A.2个 B.3个 C.4个 D.5个
【考点】一元一次方程的定义.
【分析】只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程.它的一般形式是ax+b=0(a,b是常数且a≠0).
【解答】解:①x﹣2= 是分式方程;
②0.2x﹣2=1是一元一次方程;
③ 是一元一次方程;
④x2﹣3x﹣4=0是一元二次方程;
⑤2x=0是一元一次方程;
⑥x﹣y=6是二元一次方程;
故选:B.
【点评】本题主要考查了一元一次方程的一般形式,只含有一个未知数,且未知数的指数是1,一次项系数不是0,这是这类题目考查的重点.
5.方程3x+2(1﹣x)=4的解是()
A.x= B.x= C.x=2 D.x=1
【考点】解一元一次方程.
【专题】计算题.
【分析】方程去括号,移项合并,把x系数化为1,即可求出解.
【解答】解:去括号得:3x+2﹣2x=4,
解得:x=2,
故选C.
【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.
6.若实数a,b,c在数轴上对应点的位置如图所示,则下列不等式成立的是()
A.ac>bc B.ab>cb C.a+c>b+c D.a+b>c+b
【考点】实数与数轴.
【分析】根据数轴判断出a、b、c的正负情况,然后根据不等式的性质解答.
【解答】解:由图可知,a
初一数学试卷
七年级数学期末考试犹如练功夫,越练功夫越深。我整理了关于人教版七年级数学下册期末考试,希望对大家有帮助!
人教版七年级数学下册期末试题
一.选择题(共10小题,每小题3分,满分30分.)以下每小题给出的A、B、C、D四个选项,其中只有一个选项是正确的,请把正确答案的番号填写到下面的表格中。
题号 1 2 3 4 5 6 7 8 9 10
答案
1、下列计算正确的是
A、 B、
C、 D、
2、下列各式不能成立的是
A、(x =x B、x
C、(x D、x
3、如图,把△ABC的一角折叠,若∠1+∠2 =120°,则 的度数是
A、60° B、65° C、50° D、 55°
4、如图4 是大众汽车的标志图案,其中蕴涵着许多几何知识.
根据下面的条件完成证明.
已知:如图4, , . 若 ,则 的度数是
A、60° B、30° C、40° D、45°
5、如图,在△ABC中,D、E分别是AC、BC上的点,若
△ADB≌△EDB≌△EDC,则∠C的度数是
A.15° B.20° C.25° D.30°
6、以下列各组数据为长度的三条线段,能组成三角形的是
A..5,9,5 B.1,4,3 C 1,2,3 D.2,7,3
7.下面有4个汽车标致图案,其中是轴对称图形的有
A.1个 B.2个 C.3个 D.4个
8.下列说法正确的是
A.如果一件事不可能发生,那么它是必然事件,即发生的概率是1;
B.不太可能发生的事情的概率不为0
C.若一件事情肯定发生,则其发生的概率 ;
D.概率很大的事情必然发生;
9、如图,向高为H的圆柱形空水杯中注水,表示注水量y与水深x的关系的图象是
A,0.7 B, 0.8 C, 0.9 D,0.6
10、如图, ,点 分别在射线 上运动, 平分 ,
的反向延长线与 的平分线交于点 .当 移动后, 时,则 的度数是
A、 B、 C、 D、
第10 题图 第13题图
得分 评卷人
二、填空题(本大题共6小题,每小题3分,共18分.请你把答案填在横线的上方).
11、已知 是一个完全平方式,那么k的值为
12、 ( )-1+(3-π)0=______
13、如图,ΔABC中,AB的垂直平分线交AC于点M。
初一数学题50道经典题
一、 选择题(48=32分)
1、将不等式组 的解集在数轴上表示,正确的是( )
A、 B、
C、 D、
2、已知,关于 的不等式 的解集如图所示,则 的值等于( )
A、 0 B 、1 C、-1 D、2
3、已知关于 的不等式组 无解,则 的取值范围是( )
A、 B、 C、 D、 或
4、不等式 的解集为 ,则 的取值范围是( )
A 、 B、 C、 D、
5、 如果 ,那么下列结论不正确的是( )
A、 B、 C、 D、
6、关于 的方程 的解都是负数,则 的取值范围是( )
A 、 B、 C、 D、
7、若 ,则( )
A、 B、 C、 D、
8、某商品原价800元,出售时,标价为1200元,要保持利润率不低于5%,则至多可打( )
A、6折 B、7折 C、8折 D、9折
二、 填空:(39=27分)
9、已知关于 的不等式组 的整数解有5个,则 的取值范围
是________
10、某商品的售价是150元,这种商品可获利润10%~20%,设这种商品的进价为 元,则 的值范围是_________
11、满足 的 的最小整数是________
12、如果三个连续自然数的和不大于9,那么这样自然数共有组___________
13、已知 且 ,则 的取值范围是 _________; _________
14、若 ,则不等式 的解集是_______________
15、若不等式组 无解,则 的取值范围是________________
16、不等式组 的整数解为________________
17、当 时,不等式组 的解集是_____________
三、 解答题(本大题共61分)
18、解不等式 并把解集在数轴上表示出来(7分)
19、求不等式组 的整数解 (7分)
20、代数式 的值是否能同时大于代数式 和 的`值?
说明理由?(8分)
21、若不等式 的最小整数解是方程 的解,求 的值(9分)
22、乘某城市的一种出租车起价是10元(即行驶路程在5Km以内都付10元车费),达到或超过5Km后,每增加1Km加价1.2元,(不足1部分按1Km计),现某人乘这种出租车从甲地到乙地,支付车费17.2元,从甲地到乙地的路程是多少?(10分)
23、某港受潮汐的影响,近日每天24小时港内的水深变化大体如下图:
一般货轮于上午7时在该港码头开始卸货,计划当天卸完货后离港。
初一数学试卷人教版
1. 若c个同学搬运a块砖需要a2b/c2小时,那么1个同学在1小时内搬运的砖块数为c/(ab)。由此可知,c个同学搬运a块砖所需时间是a/(c*c/(ab)),简化后为a2b/c2。
2. 数字1000b+a,100C+10b+a,以及b+2c=a。通过代数运算,可以得出c=-2b,a=-3b,d=-b。因此,a+b+c+d=-5b。由于b为负数,取最小正整数1,最大值为-5。
3. 由a-b=2,b-c=-3,可以得到a-c=-1。通过c-d=5和b-d=2,可以求得a-d=4。最后,计算(a-c)(b-d)/(a-d)=-1/2。
4. 设原来的十位数为X,个位数为(X+Y)。根据题意,有10X+(X+Y)-[10(X+Y)+X]=-9Y,解得Y=-X。由此得出,X+Y的值为0。
5. 设x=1时,1=a0+a1+a2+……+a11+a12,x=-1时,36=a0-a1+a2+……-a11+a12。
以上就是七年级数学试题的全部内容,1. 若c个同学搬运a块砖需要a2b/c2小时,那么1个同学在1小时内搬运的砖块数为c/(ab)。由此可知,c个同学搬运a块砖所需时间是a/(c*c/(ab)),简化后为a2b/c2。2. 数字1000b+a,100C+10b+a,以及b+2c=a。通过代数运算,可以得出c=-2b,a=-3b,d=-b。因此,a+b+c+d=-5b。内容来源于互联网,信息真伪需自行辨别。如有侵权请联系删除。