目录化学镀镍和化学镀铜 电镀硬铬工艺流程 化学镀铬和电镀区别 化学镀铬方法 金属表面镀铬的目的
镀铬指的是:利用电镀的方法在其他金属表面形成一层铬层,主要用于保护底材,提高底材的抗腐蚀能力,也可用让粗盯于装饰。
电镀这个是属于电化学的范畴,镀铬又是最基础的电镀种类,应用十分广泛:比如旧式的自行车钢圈,表面银亮的就是镀铬处理了。再比如一些军工产品的表面电镀也是做镀铬处理,只是军用镀铬与民用镀铬略微不同,这个随后再说。
镀铬的反应是电化学反应,简单讲就是溶液中的铬离子(通常是六价铬),在电场的作用下,在金属(必须要导电良好的金属)的表面与硫酸进行化学反应,并且得到三个电坦和子,形成三价铬的硫化物,从而在金属的表面成膜。
他的化学方程式是:2Cr+3H2SO4=Cr2(SO4)3+3H2↑
因为这层铬的硫化物十分致密,能有效的隔绝底材金属与空气/水等腐蚀介质的接触,从而达到防腐的效果。并且涂膜呈金属亮银色,因此具有装饰性。
军用的镀铬和民用的镀铬最大的不同是:军用的镀铬使用的催化剂为剧毒的氰化物,这样产生的镀层更加致密均匀,性能更好。民用的一般使用硫酸亚铁之类的。
因为铬化物和铬离子属于致癌物质,具有长期毒性并且自然降解消毒,对环境污染较大,特别是对地下水源的污染影响很深远,因此目前世界上对于民用镀铬这块一直在取缔关停,现在的电镀工业在防腐方面主要采用更廉价的镀锌或较昂贵的镀镍,镀铬处特殊用途现在越凳码来越少了。
就神梁是往物体上镀一层铬。
六价铬的毒性大,对环境污染严重。镀铬溶液大量使用铬酐,是电镀行业含铬废水的主要污染源。这一问题已经引起人们普遍的关注,各国政府也加强了立法管理,如美国对六价铬的排放标准已从0.05mg/L降到0.01mg/L,并从1997年起开始执行。六价铬镀铬液的电流效率低和覆盖能力差也是一个问题。为了从根本上减轻污染和提高电流效率及覆盖能力,三价铬镀铬工艺越来越受到人们的青睐。
三价铬镀铬自1854年Bunsen发表第一篇论文以来,迄今已有100余年历史,由于有些技术问题难以突破,因此进展比较缓慢。至20世纪70年代,随着科学技术的发展和化学原料的增多,以及人们对环保意识的进一步增强,三价铬镀铬研究又提到电镀工作者议事日程上来了。1974年英国发表了 Alecra-3的三价铬镀铬工艺,并于1975年申请了一份用三氯化铬作主盐的三价铬镀铬专利,即Alecra-3000。1981年,英国开发了硫酸盐的环保铬(Envir0-chome)的三价铬镀铬工艺。该工艺采用选择性离子隔膜将阴极区域和阳极区域分开,这样可避免阳极板上氧化成的六价铬对三价铬镀液带来的危迹丛害:几乎同时,美国Harsha0公司也开发了Tri-chrome三价铬镀铬工艺。
三价铬镀铬液的主要优点如下。
(1)毒性低,废水处理容易。据报道三价铬的毒性只有六价铬的1/100,而且在电镀过程中不产生六价铬酸雾。镀液浓度低,只有六价铬镀液的1/7左右,因而带出镀液量少,废水处理也容易。
(2)镀液的电流密度范围宽,可在0.5~100A/dm宽广的阴极电流范围内获得合格的镀层。
(3)镀液分散能力和覆盖能力优于六价铬镀液。
(4)镀液的电流效游州运率高,可达25%左右。
(5)镀液可不必加温,在常温条件下工作,从而节约了能源。
(6)镀层耐蚀性佳,可直接镀取微观不连续的铬镀层。
(7)电镀时,即使电流中断也不影响结合力。
但早期的三价铬镀层的缺点是比较突出的,主要有如下几点。
(1)色泽不像六价铬镀液中取出的呈青白色,而是带有不锈钢的黄白色,因而难以使用户接受。
(2)镀层的厚度只能达到3μm,不能再增厚,因此不适合镀硬铬。 (3)镀液稳定性差。
(4)镀层的硬度低。
可喜的是通过电镀工作者不懈的努力,上述存在的四个问题目前已基本被突破。
(1)现在已能镀取较青白色接近六价铬镀液中镀取的色泽。
(2)镀层厚度也可达到数十微米甚至可达数百微米。
(3)镀液的稳定性也大有提高。
(4)镀层的镀态硬度虽较低(HV600~900),但若经一定的温度热处理后,硬度可达到HVl200~1800,耐磨性也大大增强。我们知道,这一硬度值已经大大超过了六价铬镀铬层。
镀铬的工艺要求有许多点,以下是一一列举:
⑴防护一装饰性镀铬
防护一装饰性镀铬不仅要求镀层在大气中具有很好的耐蚀性,而且要有美丽的外观。
这类镀层也常用于非金属材料的电镀。
防护一装饰性镀铬可分为一般防护装饰镀铬与高耐蚀性防护装饰镀铬。表4—28列出防护装饰性镀铬的工艺规范。
装饰性镀铬的工艺条件也取决于欲镀的基体金属材料。可根据基体材料的不同适当调整工作温度和阴极电流密度。
1)一般防护装饰性镀铬
一般防护装饰性镀铬采用中、高浓度旅敏的普通镀铬液,适用于室内环境使用的产品。钢铁、锌合金和铝合金镀铬必须采用多层体系,主要工艺流程如下。
①钢铁基体铜/镍/铬体系工艺流程为:
除油→水洗→浸蚀→水洗→闪镀氰铜或闪镀镍→水洗→酸铜→水洗→亮镍→水洗→镀铬→水洗干燥。
表4-28 防护装饰性镀铬的工艺规范
多层镍/铬体系工艺流程为:
除油→水洗→浸蚀→水洗→镀半光亮镍→水洗→光亮镍→水洗→镀铬→水洗→干燥。
↓ ↑
高硫冲击镍 (1μm)
②锌合金基体弱碱化学除油→水洗→浸稀氢氟酸→水洗→电解除油→水洗→闪镀氰铜→水洗→光亮镀铜→光亮镍→水洗→镀铬→水洗→干燥。
③铝及铝合金基体 弱碱除油→水洗→电解除油→水洗→次浸锌→溶解浸锌层→水洗一二次浸锌→水洗→闪镀氰铜(或预镀镍) →水洗→光亮镀铜→水洗→光亮镀镍→水洗→镀铬→水洗→干燥。
2)高耐蚀装饰性镀铬
高耐蚀装饰性镀铬是采用特殊工艺改变镀铬层的结构,从而提高镀层的耐蚀性,该镀层适用于室外条件要求苛刻的场合。
在防护装饰性镀铬体系中,多层镍的应用显著提高了镀层的耐蚀性,研究发现,镍、铬层的耐蚀性不仅与镍层的性质及厚度有关,同时在很大程度上还取决于铬层的结构特征。从标准镀铬溶液中得到的普通防护装饰性镀铬层虽只有0.25~0.5μm,但镀层的内应力很大,.使镀层出现不均匀的粗裂纹。在腐蚀介质中铬镀层是阴极,裂纹处的底层是阳极,因此,遭受腐蚀的总是裂纹处的底层或基体金属。由于裂纹处暴露出的底层金属面积与镀铬层面积相比很小,因而腐蚀电流密度很大,腐蚀速度很快,而且腐蚀一直向纵深发展。由于裂
纹不可避免,如果改变微裂纹的结构,使腐蚀分散,那么就可减缓腐蚀樱镇基。在此构思下,20世纪60年代中期开发出了高耐蚀性的微裂纹铬和微孔铬新工艺。这两种铬统称为“微不连续铬”由于形成的铬层具有众脊谨多的微孔和微裂纹,暴露出来的镀镍面积增大但又很分散,使镍层表}面上的腐蚀电流密度大大降低,腐蚀速度也大为减缓,从而提高了组合镀层的耐蚀性,并且使镍层的厚度减小5μm左右。
①微裂纹铬在光亮镀镍层上施镀一层0.5~3μm高应力镍,再镀0.25μm普通装饰铬,由于高应力镍层的内应力和铬层内应力相叠加,就能在每平方厘米上获得250~1500条{分布均匀的网状微裂纹铬。
研究发现,普通镀铬电解液中加入少量的seO42-,可得到内应力很大的镀铬层。在添加seO42-的镀液中得到的铬镀层带有蓝色。SeO42-含量越高,镀层的蓝色越重。
采用双层镀铬法也可获得微裂纹铬镀层。工艺为先镀覆一层覆盖力好的铬镀层,然后在含氟化物的镀铬溶液中镀覆一层微裂纹铬层。双层法电镀微裂纹铬镀层的工艺见表4—28。,双层法的缺点是需要增加设备,电镀时间长,电能消耗多。故目前已用单层微裂纹铬代替,{但单层微裂纹铬也存在氟化物分析困难及微裂纹分布不均等缺点。
②微孔铬 目前使用最多的电镀微孔铬的方法是在光亮镀镍上镀覆厚度不超过0.5μm的镍基复合镀层(镍封闭),再镀光亮铬层,便得到微孔铬层。
镍基复合镀层中均匀弥散的不导电微粒粒径在0.5μm以下,在镀液中的悬浮量为50~lO0g/L,微粒在复合镀层中含量为2%~3%。常用的微粒有硫酸盐、硅酸盐、氧化物、氮化物和碳化物等。由于微粒不导电,在镀铬过程中微粒上没有电流通过,其上面也就没有金 属铬沉积,结果就形成了无数微小的孔隙,密度可达每平方厘米一万个以上。
3)防护装饰性电镀注意事项
①较大零件人槽前要通过热水冲洗预热,切勿在镀液中预热,否则会腐蚀高亮度的底层表面。
②小零件需采用滚镀铬工艺,滚镀铬镀液中应加入氟硅酸,防止零件滚镀时瞬间不接触导电而致表面钝化。
③零件带电入槽,对于复杂零件采用冲击电流,或增大阴、阳极距离。
④每一电镀层都要抛光,提高光洁程度,减少孔隙,防蚀。
⑤在镍上镀铬时,如镍钝化,可用酸浸法活化,然后镀铬。活化方法为:在30%~50%(体积分数)的盐酸中浸30~60s;在20%(体积分数)的硫酸中浸蚀约5min;在5%(体积分数)的硫酸中阴极处理l5s左右,再镀铬,就可得到结合力良好的镀铬层。
⑥电源宜采用全波整流。
⑦采用高浓度铬酐镀液时,可安装回收槽以节约铬酐,降低成本,减少废水处理量。
⑵滚镀铬
需要镀铬的细小零件,如采用通常的挂镀,不仅效率低,而且镀件上常留下夹具的痕迹,不能保证镀层的质量。滚镀铬多用于体积小、数量多、又难以悬挂零件的装饰性多层电镀,如铜/光亮镍/铬或光亮低锡青铜/铬。此法可提高生产效率、降低成本。但它只适用于形状简单、具有一定自重的镀件;不适用于扁平片状、自重小以及外观要求较高的零件电镀。
滚镀铬时应注意的事项如下:
①滚镀铬溶液用蒸馏水或去离子水配制,注意清洁,严防杂质带入,特别注意不要带人Cl一;
②硫酸根应控制适宜,不易过高,以免零件表面发黄或镀不上铬,过量的硫酸可用碳酸钡除去;’
③氟硅酸对镀层有活化作用,并能扩大光亮范围,不可缺少,也不宜过量;
④带电入槽,开始使用冲击电流,约l~2min即可;
⑤零件装入滚桶前,必须将桶内的铬酸液清洗净,以防零件被铬酸腐蚀发花;
⑥滚桶使用一段时间后,用盐酸处理,以除去滚桶网上的铬层;
⑦零件小,温度可稍低些,为避免镀液温度升高最好用冷却装置。
⑶镀硬铬
硬铬又称耐磨铬,硬铬镀层不仅要有一定的光泽,而且要求底层的硬度高、耐磨性好并与基体结合牢固。
镀层厚度应根据使用场合不同而异。在机械载荷较轻和一般性防护时,厚度为l0~20μm;在滑动载荷且压力不太大时,厚度为20~25μm;在机械应力较大和抗强腐蚀作用时,厚度高达l50~300μm;修复零件尺寸厚度可达800~1000μm。
耐磨镀铬一般采用铬酐浓度较低(Cr03150~200g/L)的镀液,有的工厂也采用标准镀铬液。工艺条件上宜采用较低温度和较高的阴极电流密度,应视零件的使用条件和对铬层的要求而定。表4—29列出了获得最大硬度镀铬层的适宜温度和电流密度关系。生产上一般采用温度为50~60℃(常用55℃)和25~75A/dm2(多数为50A/dm2)的阴极电流密度。工艺条件一经确定,在整个电沉积过程中,尽可能保持工艺条件的恒定,特别是温度,变化不要超过±1℃。
镀硬铬应注意如下问题。
①欲镀零件无论材质如何,只要工件较大,均需预热处理,因为镀硬铬时间较长,镀层较厚,内应力大且硬度高,而基体金属与铬的热膨胀系数差别较大。如不预热就施镀,基体金属容易受热膨胀而产生“暴皮”现象,预热时间根据工件大小而定。
②挂具用材料必须在热的铬酸溶液中不溶解,也不发生其他化学作用。夹具还应有足够的截面积,且与导电部件接触良好。否则因电流大,槽电压升高,局部过热。
应按照各种材料的导电率选择夹具的截面积,常见的几种材料允许使用电流为:紫铜——3A/mm2,黄铜——2.53A/mm2,钢铁——2A/mm2。
夹具结构应尽量采用焊接形式连接;夹具非工作部分应用聚氯乙烯塑料布或涂布耐酸胶绝缘。
③装挂时应考虑便于气体的逸出,防止“气袋”形成,造成局部无镀层或镀层厚度不均。
④复杂零件镀铬应采用象形阳极,圆柱形零件两端应加阴极保护,避免两端烧焦及中间镀层薄的现象;带有棱角、尖端的零件可用金属丝屏蔽。
⑤为提高镀层的结合力,可进行反电、大电流冲击及阶梯式给电。反电时间为0.5~3min,阴极电流密度为30~40A/dm2。大电流冲击为80~120A/dm2,时间为l~3min。
⑥对于易析氢的钢铁部件,应在镀后进行除氢处理。
⑷镀松孔铬
松孔铬镀层是具有一定疏密程度和深度网状沟纹的硬铬镀层,具有很好的储油能力。工作时,沟纹内储存的润滑油被挤出,溢流在工件表面上,由于毛细管作用,润滑油还可以沿着沟纹渗到整个工件表面,从而改善整个工件表面的润滑性能,降低摩擦系数,提高抗磨损性能。
获得松孔铬的方法有机械、化学或电化学法。
①机械法在欲镀铬零件表面用滚压将基体表面压成圆锥形或角锥形的小坑或相应地车削成沟槽,然后镀铬、研磨。此法简单,易于控制,但对润滑油的吸附性能不太理想。
②化学法利用镀铬层原有裂纹边缘具有较高活性的特点,在稀盐酸或热的稀硫酸中浸
蚀,裂纹边缘处的铬优先溶解,从而使裂纹加深加宽,达到松孔的目的。此法铬的损耗量大,溶解不均匀,质量不易控制。
③电化学法在镀硬铬后,经除氢、研磨后,再在碱液、铬酸、盐酸或硫酸中进行阳极松孔处理。由于铬层裂纹处的电位低于平面的电位,因此裂纹处的铬优先溶解,从而使裂纹加深加宽。处理后的松孔深度一般为0.O2~0.05μm。
阳极浸蚀时,裂纹的加深和加宽速度用通过的电量(浸蚀强度)来控制。在适宜的浸蚀强度范围内,可以选择任一阳极电流密度,只要相应地改变时间,仍可使浸蚀的强度不变。浸蚀强度根据镀铬层原来的厚度确定。厚度为l00μm以下的铬镀层,浸蚀强度为320A·min/dm2,厚度为l00~150μm的铬镀层,浸蚀强度为400A·min/dm2,150μm以上的铬镀层,浸蚀强度为480A·min/dm2。对于尺寸要求严格的松孔镀铬件,为控制尺寸,最好采用低电流密度进行阳极松孔;当要求网纹较密时,可采用稍高的阳极电流密度;当零件镀铬后经过研磨再阳极松孔时,浸蚀的强度应比上述数值减少(1/2)~(1/3)。
松孔铬层的网状裂纹密度取决于硬铬镀层原有裂纹密度。因此镀铬工艺对松孔镀铬的影响很大,必须严格控制。根据实践经验,采用表4-30所列工艺镀铬,可获得质量比较稳定的松孔铬镀层。
黑铬镀层在色
他化学和电化学方法获得的黑色覆盖层优越,因此在航空、汽车、仪器仪表等需要消光的装饰性镀层以及太阳能吸收层方面获得广泛应用。黑铬镀层的黑色是由镀层的物理结构所《致,它不是纯金属铬,而是铬和三氧化二铬的水合物组成,呈树枝状结构,金属铬以微粒形式弥散在铬的氧化物中,形成吸光中心,使镀层呈黑色。通常镀层中铬的氧化物含量越高,黑色越深。黑铬镀层的耐蚀性优于普通镀铬层。黑铬镀层硬度虽只有130~350HV,但耐磨性与普通镀铬层相当。黑铬镀层的热稳定性高,加热到480℃,外观无明显变化,与底层的结合力良好。电镀黑铬工
铬酐是镀液中的主要成分,其含量在150~400g/L范围内均可获得黑铬镀层。铬酐浓度低,镀液分散能力差;浓度高,虽然镀液的分散能力有所改善,但镀层的抗磨性能下降。一般在200~350g/L之间选用。
硝酸钠、醋酸是发黑剂,含量过低时,镀层不黑,镀液电导率低,槽电压高。浓度过高,镀液的深镀能力和分散能力差。通常硝酸钠控制在7~12g/L,醋酸控制在6~7g/L之间。在以硝酸钠为发黑剂的镀液中,没有硼酸时,镀层易起“浮灰”,尤其是在高电流密度下更为严重。加入硼酸可以减少“浮灰”。硼酸达到30g/L时,可以完全消除“浮灰”。硼酸的加入还可以提高镀液的深镀能力,并使镀层均匀。
镀液温度和阴极电流密度对黑铬镀层的色泽和镀液性能影响极大。最佳条件是低于25℃,电流密度大于40A/dm2。阴极电流密度过小,镀层呈灰黑色,甚至出现彩虹色;但也不宜过大,当大于80A/dm2时镀层易烧焦,而且镀液升温严重;当温度高于40℃时,镀层表面产生灰绿色浮灰,镀液深镀能力降低。因此,在电镀黑铬的过程中,必须采取降温措施。SO42-和cl一在镀黑铬电解液中都是有害杂质,SO42-使镀层呈淡黄色而不黑,可用BaC03或Ba(OH)2沉淀除去;Cl一使镀层出现黄褐色浮灰,因此配制溶液时应使用去离子水,并且在生产过程中严格控制有害杂质的带人;挂具和阳极铜钩应镀锡保护。
黑铬镀层可以直接在铁、铜、镍和不锈钢上进行施镀,也可以先镀铜、镍或铜锡合金做底层以提高抗腐蚀性和耐磨性。对形状复杂的零件应使用辅助阳极,阳极材料采用含锡7%的铅锡合金或高密度石墨。
镀完黑铬的零件,烘干后进行喷漆或浸油处理,可以提高光泽性和抗腐蚀能力。
⑹镀乳白铬
乳白铬一般厚度在30~60μm,抗蚀性能良好,但硬度较低,光泽性差。镀乳白铬的工艺、镀前准备和镀后处理,基本与镀硬铬相同。其主要的不同点是:要求温度较高(65~75℃),阴极电流密度较低(25~30A/dm2)。
化学镀镍的显微硬度HV在500-600,经400℃热处理可达1000,可与镀硬铬相比。化学镀铬工艺还不成熟,没激念帆有推广使用,现推荐一个配方你试试:溴化高磨铬16g/L,氯化铬11g/L,草酸钾5g/L,明雹醋酸钠10g/L,pH4-6,温度70-90℃。
在镀铬过程中裤灶阴极电流密度与温度之间存在着相互依赖的关系。在同一溶液中镀铬时,通过调整温度和电流密度,并控制在适当的范围内,可以获得光亮铬、硬铬和乳白铬三种不同性能的镀铬层。
在低温高电流密度区,铬镀层呈灰暗色或烧焦,这种镀层具有网状裂纹、硬度大、脆性大;高温低电流密度区,铬层呈乳白色,这种组织细致、气孔少,无裂纹,防护性能较好,但硬度低,耐磨性差;中温中电流密度区或两者配合较好时,可获得光亮镀铬层,这种铬层硬度较高,有细而稠密的网状裂纹。
扩展资料
①钢铁基体铜/镍/铬体系工艺流程为:
除油→水洗→浸蚀→水洗→闪镀氰铜或闪镀镍→水洗→酸铜→水洗→亮镍→水洗→镀铬→水洗干燥。
多层镍/铬体系工艺流程为:
除油→水洗→浸蚀→水洗→镀半光亮镍→水洗→光亮镍→水洗→镀铬→水洗→干燥。
②锌合金基体弱碱化学除油→水洗→浸稀氢氟酸→水洗→电解除油→水洗→闪镀氰铜→水洗→光亮咐纯仔镀铜→光亮镍→水洗→镀铬→水洗→干燥。
③铝及铝合金基体 弱碱除油→水洗→电解除油→水洗→次浸锌→溶解浸锌层→水洗一二次浸锌→水洗→闪镀衡汪氰铜(或预镀镍) →水洗→光亮镀铜→水洗→光亮镀镍→水洗→镀铬→水洗→干燥。
参考资料来源:-镀铬