当前位置: 首页 > 所有学科 > 数学

高中数学必修一人教版,高中数学课本答案电子版

  • 数学
  • 2023-06-08
目录
  • 高一必修一下册数学电子版
  • 高二数学必修一电子课本
  • 高一数学必修一电子版课本
  • 高中数学必修一教材目录
  • 高中数学课本答案电子版

  • 高一必修一下册数学电子版

    高中前高衫念宏数学合集

    1znmI8mJTas01m1m03zCRfQ

    ?pwd=1234

    1234

    简介:高中数学优质资料慧腔,包括:试题试卷、课件、教材、、各大名师网校合集。

    高二数学必修一电子课本

    1.高中数学必修一函数的基本性质——函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作: y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域.

    注意:如果只给出解析式y=f(x),而没有指明它的定义域,则函数的定义域即是指能使这个式子有意义的实数的集合; 函数的定义域、值域要写成集合或区间的形式.

    定义域补充

    能使函数式有意义的实数 x 的集合称为函数的定义域,求函数的定义域时列不等式组的主要依据是:

    (1) 分式的分母不等于零;

    (2) 偶次方根的被开方数不小于零;

    (3) 对数式的真数必须大于零;

    (4) 指数、对数式的底必须大于零且不等于 1.

    (5) 如果函数是由一些基本函数通过四则运算结合而成的 . 那么,它的定义域是使各部分都有意义的 x 的值组成的集合 .

    (6)指数为零底不可以等于零

    构成函数的三要素:定义域、对应关系和值域

    再注意:

    (1)构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数)

    (2)两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。相同函数的判断方法:①表达式相同;②定义域一致 (两点必须同时具备)

    值域补充

    ( 1 )、函数的值域取决于定义域和对应法则,不论采取什么方法求函数的值域都应先考虑其定义域 . ( 2 ) . 应熟悉掌握一次函数、二次函数、指数、对数函数及各三角函数的值域,它是求解复杂函数值域的基础 .( 3 ) . 求函数值域的常用方法有:直接法、反函数法、换元法、配方法、均值不等式法、判别式法、单调性法等 .

    3. 高中数学必修一函数的基本性质——函数图象知识归纳

    (1) 定义:在平面直角坐标系中,以函数y=f(x) , (x ∈A)中的 x 为横坐标,函数值 y 为纵坐标的点 P(x , y) 的集合 C ,叫做函数y=f(x),(x∈A)的图象.

    C 上每一点的坐标 (x , y) 均满足函数关系 y=f(x) ,反过来,以满足 y=f(x) 的每一组有序实数对 x 、 y 为坐标的点 (x , y) ,均在 C 上.即记为 C={ P(x,y) | y= f(x) , x ∈A}

    图象 C 一般的是一条光滑的连续曲线 ( 或直线 ), 也可能是由与任意平行与 Y 轴的直线最多只有一个交点的若干条曲线或离散点组成 .(2)画法

    A、描点法:根据函数解析式和定义域,求出 x,y 的一些对应值并列表,以 (x,y) 为坐标在坐标系内描出相应的点 P(x, y) ,最后用平滑的曲线将这些点连接起来 .

    B、图象变换法(请参考必修4三角函数)

    常用变换方法有三种,即平移变换、伸缩变换和对称变换

    (3) 作用:

    1 、直观的看出函数的性质; 2 、利用数形结合的方法分析解题的思路。提高解题的速度。

    发现解题中的错误。

    4.高中数学必修一函数的基本性质——快去了解区间的概念

    (1)区间的分类:开区间、闭区间、半开半闭区间;(2)无穷区间;(3)区间的数轴表示.

    5.高中数销贺学必修一函数的基本性质——什么叫做映射

    一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有确定的元素y与之对应,那么就带伍称对应f:AB为从集合A到集合B的一个映射。记作“f:AB”

    给定一个集合A到B的映射,如果a∈A,b∈B.且元素a和元素b对应,那么,我们把元素b叫做元素a的象,元素a叫做元素b的原象

    说明:函数是一种特殊的映射,映射是一种特殊的对应,①集蠢斗或合A、B及对应法则f是确定的;②对应法则有“方向性”,即强调从集合A到集合B的对应,它与从B到A的对应关系一般是不同的;③对于映射f:A→B来说,则应满足:(Ⅰ)集合A中的每一个元素,在集合B中都有象,并且象是的;(Ⅱ)集合A中不同的元素,在集合B中对应的象可以是同一个;(Ⅲ)不要求集合B中的每一个元素在集合A中都有原象。

    常用的函数表示法及各自的优点:

    函数图象既可以是连续的曲线,也可以是直线、折线、离散的点等等,注意判断一个图形是否是函数图象的依据; 解析法:必须注明函数的定义域; 图象法:描点法作图要注意:确定函数的定义域;化简函数的解析式;观察函数的特征; 列表法:选取的自变量要有代表性,应能反映定义域的特征.

    注意啊:解析法:便于算出函数值。列表法:便于查出函数值。图象法:便于量出函数值

    补充一:分段函数 (参见课本P24-25)

    在定义域的不同部分上有不同的解析表达式的函数。在不同的范围里求函数值时必须把自变量代入相应的表达式。分段函数的解析式不能写成几个不同的方程,而就写函数值几种不同的表达式并用一个左大括号括起来,并分别注明各部分的自变量的取值情况.(1)分段函数是一个函数,不要把它误认为是几个函数;(2)分段函数的定义域是各段定义域的并集,值域是各段值域的并集.

    补充二:复合函数

    如果 y=f(u),(u ∈M),u=g(x),(x∈A),则 y=f[g(x)]=F(x),(x∈A)称为f、g的复合函数。

    高一数学必修一电子版课本

    【 #高一#导语】不去耕耘,不去播种,再肥的沃土也长不出庄稼,不去奋斗,不去创造,再美的雹雀青春也结不出硕果。不要让追求之舟停泊在幻想的港湾,而应扬起奋斗的风帆,驶向现实生活的大海。高一频道为正在拼搏的你整理了《高一人教版数学必修一知识点整理》,希望对你有帮助!

    【一】

    一、集合有关概念

    1.集合的含义

    2.集合的中元素的三个特性:

    (1)元素的确定性,

    (2)元素的互异性,

    (3)元素的无序性,

    3.集合的表示:{…}如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}

    (1)用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}

    (2)集合的表示方法:列举法与描述法。

    注意:常用数集及其记法:

    非负整数集(即自然数集)记作:N

    正整数集N*或N+整数集Z有理数集Q实数集R

    1)列举法:{a,b,c……}

    2)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。{xR|x-3>2},{x|x-3>2}

    3)语言描述法:例:{不是直角三角形的三角形}

    4)Venn图:

    4、集合的分类:

    (1)有限集含有有限个元素的集合

    (2)无限集含有无限个元素的集合

    (3)空集不含任何元素的集合例:{x|x2=-5}

    二、集合间的基本关系

    1.“包含”关系—子集

    注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。

    反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA

    2.“相等”关系:A=B(5≥5,且5≤5,则5=5)

    实例:设A={x|x2-1=0}B={-1,1}“元素相同则两集合相等”

    即:①任何一个集合是它本身的子集。AA

    ②真子集:如果AB,且AB那就说集合A是集合B的真子集,记作AB(或BA)

    ③如果AB,BC,那么AC

    ④如果AB同时BA那么A=B

    3.不含任何元素的集合叫做空集,记为Φ

    规定:空集是任何集合的子集,空集是任何非空集合的真子集。

    有n个元素的集合,含有2n个子集,2n-1个真子集

    三、集合的运算

    运算类型交集并集补集

    定义由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.记作AB(读作‘A交B’),即AB={x|xA,且xB}.

    由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集.记作:AB(读作‘A并B’),即AB={x|xA,或xB}).

    设S是一个集合,A是S的一个子集,由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集)

    例题:

    1.下列四组对象,能构成集合的是()

    A某班所有高个子的学生B的艺术家C一切很大的书D倒数等于它自身的实数

    2.集合{a,b,c}的真子集共有个

    3.若集合M={y|y=x2-2x+1,xR},N={x|x≥0},则M与N的关系是.

    4.设集合A=,B=,若AB,则的取值范围是

    5.50名学生做的物理、化学两种实验,已知物理实验做得正确得有40人,化学实验做得正确得有31人,

    两种实验都做错得有4人,则这两种实验都做对的有人。

    6.用描述法表示图中阴影部分的点(含边界上的点)组成的集合M=.

    7.已知集合A={x|x2+2x-8=0},B={x|x2-5x+6=0},C={x|x2-mx+m2-19=0},若B∩C≠Φ,A∩C=Φ,求m的值

    二、函数的有关概念

    1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作:y=f(x),x∈A.其中逗肆悉,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应山乎的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.

    注意:

    1.定义域:能使函数式有意义的实数x的集合称为函数的定义域。

    求函数的定义域时列不等式组的主要依据是:

    (1)分式的分母不等于零;

    (2)偶次方根的被开方数不小于零;

    (3)对数式的真数必须大于零;

    (4)指数、对数式的底必须大于零且不等于1.

    (5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的集合.

    (6)指数为零底不可以等于零,

    (7)实际问题中的函数的定义域还要保证实际问题有意义.

    相同函数的判断方法:①表达式相同(与表示自变量和函数值的字母无关);②定义域一致(两点必须同时具备)

    (见课本21页相关例2)

    2.值域:先考虑其定义域

    (1)观察法

    (2)配方法

    (3)代换法

    3.函数图象知识归纳

    (1)定义:在平面直角坐标系中,以函数y=f(x),(x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数y=f(x),(x∈A)的图象.C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上.

    (2)画法

    A、描点法:

    B、图象变换法

    常用变换方法有三种

    1)平移变换

    2)伸缩变换

    3)对称变换

    4.区间的概念

    (1)区间的分类:开区间、闭区间、半开半闭区间

    (2)无穷区间

    (3)区间的数轴表示.

    5.映射

    一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有确定的元素y与之对应,那么就称对应f:AB为从集合A到集合B的一个映射。记作f:A→B

    6.分段函数

    (1)在定义域的不同部分上有不同的解析表达式的函数。

    (2)各部分的自变量的取值情况.

    (3)分段函数的定义域是各段定义域的交集,值域是各段值域的并集.

    补充:复合函数

    如果y=f(u)(u∈M),u=g(x)(x∈A),则y=f[g(x)]=F(x)(x∈A)称为f、g的复合函数。

    二.函数的性质

    1.函数的单调性(局部性质)

    (1)增函数

    设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1

    如果对于区间D上的任意两个自变量的值x1,x2,当x1f(x2),那么就说f(x)在这个区间上是减函数.区间D称为y=f(x)的单调减区间.

    注意:函数的单调性是函数的局部性质;

    (2)图象的特点

    如果函数y=f(x)在某个区间是增函数或减函数,那么说函数y=f(x)在这一区间上具有(严格的)单调性,在单调区间上增函数的图象从左到右是上升的,减函数的图象从左到右是下降的.

    (3).函数单调区间与单调性的判定方法

    (A)定义法:

    ○1任取x1,x2∈D,且x1

    ○2作差f(x1)-f(x2);

    ○3变形(通常是因式分解和配方);

    ○4定号(即判断差f(x1)-f(x2)的正负);

    ○5下结论(指出函数f(x)在给定的区间D上的单调性).

    (B)图象法(从图象上看升降)

    (C)复合函数的单调性

    复合函数f[g(x)]的单调性与构成它的函数u=g(x),y=f(u)的单调性密切相关,其规律:“同增异减”

    注意:函数的单调区间只能是其定义域的子区间,不能把单调性相同的区间和在一起写成其并集.

    8.函数的奇偶性(整体性质)

    (1)偶函数

    一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数.

    (2).奇函数

    一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=—f(x),那么f(x)就叫做奇函数.

    (3)具有奇偶性的函数的图象的特征

    偶函数的图象关于y轴对称;奇函数的图象关于原点对称.

    利用定义判断函数奇偶性的步骤:

    ○1首先确定函数的定义域,并判断其是否关于原点对称;

    ○2确定f(-x)与f(x)的关系;

    ○3作出相应结论:若f(-x)=f(x)或f(-x)-f(x)=0,则f(x)是偶函数;若f(-x)=-f(x)或f(-x)+f(x)=0,则f(x)是奇函数.

    (2)由f(-x)±f(x)=0或f(x)/f(-x)=±1来判定;

    (3)利用定理,或借助函数的图象判定.

    9、函数的解析表达式

    (1).函数的解析式是函数的一种表示方法,要求两个变量之间的函数关系时,一是要求出它们之间的对应法则,二是要求出函数的定义域.

    (2)求函数的解析式的主要方法有:

    1)凑配法

    2)待定系数法

    3)换元法

    4)消参法

    10.函数(小)值(定义见课本p36页)

    ○1利用二次函数的性质(配方法)求函数的(小)值

    ○2利用图象求函数的(小)值

    ○3利用函数单调性的判断函数的(小)值:

    如果函数y=f(x)在区间[a,b]上单调递增,在区间[b,c]上单调递减则函数y=f(x)在x=b处有值f(b);

    如果函数y=f(x)在区间[a,b]上单调递减,在区间[b,c]上单调递增则函数y=f(x)在x=b处有最小值f(b);

    例题:

    1.求下列函数的定义域:

    ⑴⑵

    2.设函数的定义域为,则函数的定义域为__

    3.若函数的定义域为,则函数的定义域是

    4.函数,若,则=

    6.已知函数,求函数,的解析式

    7.已知函数满足,则=。

    8.设是R上的奇函数,且当时,,则当时=

    在R上的解析式为

    9.求下列函数的单调区间:

    ⑴(2)

    10.判断函数的单调性并证明你的结论.

    11.设函数判断它的奇偶性并且求证

    【二】

    1、函数零点的定义

    (1)对于函数)(xfy,我们把方程0)(xf的实数根叫做函数)(xfy的零点。

    (2)方程0)(xf有实根Û函数()yfx的图像与x轴有交点Û函数()yfx有零点。因此判断一个函数是否有零点,有几个零点,就是判断方程0)(xf是否有实数根,有几个实数根。函数零点的求法:解方程0)(xf,所得实数根就是()fx的零点(3)变号零点与不变号零点

    ①若函数()fx在零点0x左右两侧的函数值异号,则称该零点为函数()fx的变号零点。②若函数()fx在零点0x左右两侧的函数值同号,则称该零点为函数()fx的不变号零点。

    ③若函数()fx在区间,ab上的图像是一条连续的曲线,则0)()(

    高中数学必修一教材目录

    人民教育出版社出的高中喊闷数学教材,分为A版和B版,用于不同的地区。区别也不是很大,大的章节基本相同,小的细节、内容上有些区别。没有找到教材,找了《教材完全解读》数学必修1的A版和B版的目录图片,这是本同步类教辅,就是和教材课程一一对应的,所以目录应该和对应的教材一致,你可以对比着看一下,点击图片应该可以看大图的。

    人教数学必修1A版

    人教数学必修1B版

    其实你不用在意它们的区别,这两个版只能是两选一的问题,你们学校用什么版就是什么版,要注意的是你所准备的教辅呀、参考资料呀,特别是同步类的,像上面说的《教材完全解读》这种课程全局顷解全析型的,还有《教材完全学案》郑腊弯这样的同步训练题集,都得是相对应的版本。

    高中数学课本答案电子版

    1.人教版高一数学必修一知识点梳理

    函数的奇偶性

    (1)偶函数

    一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数.

    (2).奇函数

    一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=—f(x),那么f(x)就叫做奇函数.

    注意:○1函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质;函数可能没有奇偶性,也可能既是奇函数又是偶函数。

    ○2由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x,则-x也一定是定义域内的一个自变量(即定义域关于原点对称).

    (3)具有奇偶性的函数的图象的特征

    型纤偶函数的图象关于y轴对称;奇函数的图象关于原点对称.

    总结:利用定义判断函数奇偶性的格式步骤:

    ○1首先确定函数的定义域,并判断其定义域是否关于原点对称;

    ○2确定f(-x)与f(x)的关系;

    ○3作出相应结论:若f(-x)=f(x)或f(-x)-f(x)=0,则f(x)是偶函数;若f(-x)=-f(x)或f(-x)+f(x)=0,则f(x)是奇卜信仿函数.

    注意啊:函数定义域关于原点对称是函数具有奇偶性的必要条件.首先看函数的定义域是否关于原点对称,若不对称则函数是非奇非偶函数.若对称,

    (1)再根据定义判定;

    (2)有时判定f(-x)=±f(x)比较困难,可考虑根据是否有f(-x)±f(x)=0或f(x)/f(-x)=±1来判定;

    (3)利用定理,或借助函数的图象判定.

    2.人教版高一数学必修一知识点梳理

    定义:

    x轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。

    范围:

    倾斜角的取值范围是0°≤α<180°。

    理解:

    (1)注意“两个方向”:直线向上的方向、x轴的正方向;

    (2)规定当直线和x轴平行或重合时,它的倾斜角为0度。

    意义:

    ①直线的倾斜角,体现了直线对x轴正向的倾斜程度;

    ②在平面直角坐标系中,每一条直线都有一个确定的倾斜角;

    ③倾斜角相同,未必表示同一条直线。

    公式:

    k=tanα

    k>0时α∈(0°,90°)

    k<0时α∈(90°,180°)

    k=0时α=0°

    当α=90°时k不存在

    ax+by+c=0(a≠0)倾斜角为A,

    则tanA=-a/b,

    A=arctan(-a/b)

    当a≠0时,

    倾斜角为90度,即与X轴垂直

    人教版高一数学必修一知识点5

    1.“包含”关系—子集

    注意:有两种可能

    (1)A是B的一部分

    (2)A与B是同一坦瞎集合。

    反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA

    2.“相等”关系(5≥5,且5≤5,则5=5)

    实例:设A={x|x2-1=0}B={-1,1}“元素相同”

    结论:对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时,集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,即:A=B

    ①任何一个集合是它本身的子集。AíA

    ②真子集:如果AíB,且A1B那就说集合A是集合B的真子集,记作AB(或BA)

    ③如果AíB,BíC,那么AíC

    ④如果AíB同时BíA那么A=B

    3.不含任何元素的集合叫做空集,记为Φ

    规定:空集是任何集合的子集,空集是任何非空集合的真子集。

    3.人教版高一数学必修一知识点梳理

    1、柱、锥、台、球的结构特征

    (1)棱柱:

    定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。

    分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。

    表示:用各顶点字母,如五棱柱或用对角线的端点字母,如五棱柱。

    几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。

    (2)棱锥

    定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体。

    分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等

    表示:用各顶点字母,如五棱锥

    几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。

    (3)棱台:

    定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分。

    分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等

    表示:用各顶点字母,如五棱台

    几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点

    (4)圆柱:

    定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体。

    几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。

    (5)圆锥:

    定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体。

    几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。

    (6)圆台:

    定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分

    几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。

    (7)球体:

    定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体

    几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径。

    2、空间几何体的三视图

    定义三视图:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右)、俯视图(从上向下)

    注:正视图反映了物体上下、左右的位置关系,即反映了物体的高度和长度;

    俯视图反映了物体左右、前后的位置关系,即反映了物体的长度和宽度;

    侧视图反映了物体上下、前后的位置关系,即反映了物体的高度和宽度。

    3、空间几何体的直观图——斜二测画法

    斜二测画法特点:

    ①原来与x轴平行的线段仍然与x平行且长度不变;

    ②原来与y轴平行的线段仍然与y平行,长度为原来的一半。

    猜你喜欢