当前位置: 首页 > 所有学科 > 数学

八年级数学下册教案,八年级数学下册一次函数教案

  • 数学
  • 2023-06-30

八年级数学下册教案?本学期数学教材内容包括:第一章《生活中的轴对称》、第二章《勾股定理》、第三章《实数》,第四章《概率的初步认识》,第五章《平面直角坐标系》,第六章《一次函数》, 第七章《二元一次方程组》。那么,八年级数学下册教案?一起来了解一下吧。

八年级下册数学教学设计

以下是为大家整理的北师大版八年级数学下册教学教案的文章,供大家学习参考!

五、记一记

1、公认的真命题称为公理,推理的过程称为证明,经过证明的真命题称为定理。

2.判断一个命题是否是真命题,可用已有的几何知识及公理进行推理证明,判断一个命题是否是假命题则可用举反例的办法。

编号:№42班级小组姓名小组评价教师评价

$6.3为什么它们平行

一、读一读 学习目标:1、熟练证明的基本步骤和书写格式;

2、会根据“同位角相等,两直线平行”(公理)证明“同旁内角互补,两直线平行”“内错角相等,两直线平行”(定理),并能应用这些结论。

二、试一试

自学指导:平行线判定公理: 同位角相等,两直线平行

1、自学教材P229-231,学完后合上课本完成下列各题:

(1)已知:如右图所示,∠1和∠2是直线a,b被直线c截出的同旁内角,且∠1和∠2互补。利用平行线判定公理证明a∥b

由此得,平行线判定定理1:;

(2)已知:如右图所示,∠1和∠2是直线a,b被直线c截出的内错角,且∠1=∠2利用平行线判定公理或上述已证明的判定定理证明a∥b

由此得,平行线判定定理2:.

三、练一练

1、在教材上完成P231随堂练习1;P232知识技能1;P233问题解决

2、已知:如右图所示,直线a,b被直线c所截,且∠1+∠2=180°

求证:a∥b 你有几种证明方法?请选择其中两种方法来证明

五、记一记:证明命题的一般步骤:

(1)根据题意画出图形(若已给出图形,则可省略)

(2)根据题设和结论,结合图形,写出已知和求证;

(3)经过分析,找出已知退出求证的途径,写出证明过程;

(4)检查证明过程是否正确完善。

八年级数学教学设计

http://www.zhaojiaoan.com/soft/sort01/sort03/sort0157/down-12261.html

《18.1 勾股定理》教案

-------人教版义务教育课程标准实验教科书《数学》八年级(下)

课题:18.1 勾股定理

教学任务分析

授课时间授课班级课型 新授课

教 学 目 标 知识技能 1、了解勾股定理的文化背景。

2、体验勾股定理的探索过程。

3、运用勾股定理进辩团行简单计算。

数学思考 在勾股定理的探索过程中,发展合情推理能力,体会数形结合的思想。

解决问题 1、通过拼图活动,体验数学思维的严谨性,发展形象思维。

2、在探究活动中,学会与人合作并能与他人交流思维的过程和探究结果。

3、初步渗透运用勾股定理解决直角三角形相关的问题的数学方法。

情感态度 1、通过对勾股定理历史的了解,感受数学文化,激发学习热情。

2、在探究活动中,体验解决问题方法的多样性,培养学生的合作交流意识和探索精神。

......

http://www.zhaojiaoan.com/soft/sort01/sort03/sort0157/down-12260.html

三角形全等的条件——两角和一边

课题:13.2§三角形全等的条件——两角和一边

授课时数:一课时

授课班级:八年级

设计内容:三角形全等的条件——两角和一边

1、学情分析:(1)学生的认识基础:学生基本明确了要判断两个三角形全等携咐橘,至少需要三个要素,并且三个元素有一定的位置关系。

人教版八年级数学教案

教案是 八年级 数学教师以课时或课题为单位对教学内容、教学步骤、教学 方法 等进行具体的安排、设计的一种教学文书。下面是我为大家精心整理的北师大版八年级数学下册的教案,仅供参考。

北师大版八年级数学下册教案设计

一、教学目标

(一)教学知识点

1.掌握三角形相似的判定方法2、3.

2.会用相似三角形的判定方法2、3来判断、证明及计算.

(二)能力训练要求

1.通过自己动手并总结推出相似三角形的判定方法2、3,培养学生的动手操作能力,总结概括能力.

2.利用相似三角形的判定方法2、3进行判断,训练学生的灵活运用能力.

(三)情感与价值观要求

1.通过探索相似三角形的判定方法2、3,体现数学活动充满着探索性和创造性.

2.通散迹过对判定方法的探索,发展学生思维的灵活性,进一步培养逻辑推理能力,领会分类思想.

二、教学重难点

教学重点:相似三角形判定方法2、3的推导过程,掌握判定方法2、3并能灵活运用. 教学难点:判定方法的推导及运用

三、教学过程设计

(一)创设情境,引入新课

投影片

[生]有四对相似三角形,它们是△AEF∽△DEC,△AFB∽△ACD,△AEB∽△CED,△AEF∽△EBA. 他们相似的理由都是用相似三角形的判定方亮掘敬法1.

[师]现在我们已经有两种方法可以判定两个三角形相似,一种是定义,一种是判定方法1,除此之外,是否还有其他的办法来判定两个三角形相似?这一问题就是本节课我们需要研究的问题.

(二)新课讲授

[师]相似三角形的判定方法1是只从角的方面考虑的,下面我们只从边的方面去考虑.我们在学习全等三角形的判定方法中,也有只用边来进行判断的,即SSS公理.大家能不能用类比的方法,猜想只用边来判定三角形相似的方法呢?

[生]三边对应成比例的两个三角形相似.

[师]下面我们就来验证一下.

1.相似三角形的判定方法2:三边对应成比例的两个三角形相似.

投影片

个组取一个相同的k值,不同的组取不同的k值,好敬慎吗?

[生]好.

[师]经过大家的亲身参与体会,你们得出的结论是什么呢?

[生]结论为∠A=∠A′,∠B=∠B′,∠C=∠C′

△ABC∽△A′B′C′,理由是:

∠A=∠A′,∠B=∠B′,∠C=∠C′

根据相似三角形的定义可知:△ABC∽△A′B′C′.

[师]其他组的同学的结论相同吗?

[生]相同.

[师]经过大家的探讨,我们又掌握了一种相似三角形的判定方法,即三边对应成比例的两个三角形相似.

2.相似三角形的判定方法3.

[师]前面两种判定方法我们都是只从角或只从边的方面去考虑的,下面我们要从两方面来考虑.还是要类比全等三角形的判定方法,在全等的判定方法中有ASA,SAS,AAS,其中ASA、AAS我们就不用考虑了,因为我们已经有判定方法1、3,下面来验证SAS,大家还是先猜想,然后再验证.

[生]两边对应成比例且夹角相等的两个三角形相似.

[师]好,下面我们还是由大家自己推导吧.请看投影片

[师]请大家按照上面的步骤进行,同时还要采取不同的组取不同的值法.

[生]按照要求作出的△ABC与△A′B′C′中,有∠B=∠B′,∠C=∠C′,因此根据判定方法1可知,△ABC∽△A′B′C′.

[师]大家同意吗?

[生]同意.

[师]好,我们又探索出一个相似三角形的判定方法,即两边对应成比例且夹角相等的两个三角形相似.

3.想一想

107

[师]下面验证SSA,即两边对应成比例,其中一边的对角对应相等,这两个三角形相似吗?

在全等三角形的判定中SSA就不成立.大家还可以仿照上面的验证过程来进行推导,下面是小明和小颖分别画出的一个满足条件的三角形,由此你能得到什么结论?

[生]从上面的图中可以得出结论:有两边对应成比例,其中一边的对角相等的三角形不相似.

4.做一做

[师]在这两节课中我们已经学完了一般相似三角形的判定方法,下面请大家总结一下有几种方法.

[生]一共有四种方法.

第一种:对应角相等,对应边成比例的两个三角形相似.即定义法.

第二种:即判定方法1

两角对应相等的两个三角形相似.

第三种:即判定方法2

三边对应成比例的两个三角形相似.

第四种:即判定方法3

两边对应成比例且夹角相等的两个三角形相似.

[师]从这四种方法中我们可以看出,第一种判定方法比较麻烦,需要研究三对角、三对边,而后面的几种方法最多只需要研究三对边或角,因此定义法一般不利用.如果已知条件只涉及角,就用第二种判定方法;如果已知条件只涉及边,就用第三种判定方法;如果既有角又有边,则可考虑用第四种方法判断.

5.议一议

如图,△ABC与△A′B′C′相似吗?你有哪些判断方法?

[生]解:△ABC∽△A′B′C′.

判断方法有.

1.三边对应成比例的两个三角形相似.

2.两角对应相等的两个三角形相似.

3.两边对应成比例且夹角相等.

4.定义法.

(三)巩固应用,拓展研究

下面每组的两个三角形是否相似?为什么?

生]解:(1)△ABC∽△DEF

∴△ABC∽△DEF

(2)在△ABC中

AB=2,AC=6

∵∠A=∠A

∴△ABC∽△AEF

(四)练习巩固,促进迁移

依据下列各组条件,判定△ABC与△A′B′C′是不是相似,并说明为什么.

(1)∠A=120°,AB=7 cm,AC=14 cm,

∠A′=120°,A′B′=3 cm,A′C′=6 cm,

(2)AB=4 cm,BC=6 cm,AC=8 cm,

A′B′=12 cm,B′C′=18 cm,A′C′=24 cm. 解:

又∵∠A=∠A′

∴△ABC∽△A′B′C′(两边对应成比例且夹角相等,两三角形相似)

(2)

∴△ABC∽△A′B′C′(三边对应成比例,两三角形相似)

(五)回顾联系,形成结构

本节课主要探讨了相似三角形的另两种判定方法,即三边对应成比例与两边对应成比例且夹角相等的两个三角形相似.培养了大家的探索精神,同时让学生懂得了数学活动充满着探索与创新,学习的目的是能运用学过的知识去解决问题,在这里就是能利用判定方法进行有关证明.

八年级数学教学计划

一、制定计划的目的

为使学生学好代数、几何的基础知识,具备当代社会中每一位公民适应日常生活、参加社会生产和进一步学习所必需的基本技能,进一步培养学生运算能力、发展思维能力和空间观念,使学生能够运用所学知识解决实际问题,逐步形成数学创新意识,特制定本学科教学计划。

八年级下册校本课程教案

教案备课笔记是老师的工作之一,只有提供一份好的教案,才能更好的提高课堂效率,让学生学到更多知识。下面是由我整理的,希望对您有用。

第一部分

教材分析

本学期教学内容共计五章,知识的前后联络,教材的教学目标,重、难点分 析如下:

第十六章分式

本章的主要内容包括:分式的概念,分式的基本性质,分式的约分与通分,分式的加、减、乘、除运算,整数指数幂的概念及运算性质,分式方程的概念及可化为一元一次方程的分式方程的解法。

第十七章函式及其影象

函式是研究现实世界变化规律的一个重要模型,本单元学生在学习了一次函式后,进一步研究反比例函式。学生在本章中经历:反比例函式概念的抽象概括过程,体会建立数学模型的思想,进一步发展学生的抽象思维能力;经历反比例 函式的图象及其性质的探索过程,在交流中发展能力这是本章的重点之一; 经历本章的重点之二:利用反比例函式及图象解决实际问题的过程,发展学生的数学应用能力;经历函式图象资讯的识别应用过程,发展学生形象思维;能根据所给资讯确定反比例函式表示式,会作反比例函式图象,并银顷羡利用它们解决简单的实际问题。本章的难点在于对学生抽象思维的培养,以及提高数形结合的意识和能力。

八年级下册数学平行四边形教案

北师大版数学八下4-1因式分解 教学设计

一.课标与教材分析

(一)课标要求

1.内容标准:能用提公因式法、公式法(直接利用公式不超过二次)进行因式分解(指数是正整数)。

2.能力目标:让学生在重点理解因式分解概念的基础上,应有意识地培养学生知识迁移的数学能力,如:类比思想,逆向运算能力等。

(二)教材分析:因式分解是代数的重消滚世要内容,它与整式和它在分式有密切联系,因式分解是在学习有理数和整式四则运算上进行的,它为今后学习分式运算,解方程及方程组及代数式和三角函数式恒等变形提供必要的基础。因此学好因式分解对于代数知识的后继学习具有相当重要的意义.

思想方法分析:本节是因式分解的第1小节,它主要让学生经历从分解因数到分解因式的过程,让学生体会数学思想——类比思想,逆向思考的作用,经历用几何图形解释因式分解的意义的过程,发展几何直观。

(三)重、难点:

本节课主要是使学生经历从分解因数到分解因式的类比过程,感受分解因式在解决相关问题中的应用, 所以确定本节课的

重点:因式分解的概念

难点:理解因式分解与整式乘法的相互关系,并运用它们之间的相互关系寻求因式分解的方法

二.学情分析:

(一)学生已经知道的:学生已经熟悉乘法的分配律及其逆运算,并且学习了整式的乘法运算,学习了分解因数,因此,对于因式分解的引入,学生不会感到陌生,它为今天学习分解因式打下了良好基础.

学生能自己解决的:理解因式分解概念

需要教师指导解决的:由整式乘法寻求因式分解的方法是一种逆向思维过程,而逆向思维对于八年级学生还比较生疏,接受起来还有一定的困难,再者本节还没有涉及因式分解的具体方法,所以对于学生来说,寻求因式分解的方法需要教师指导解决.

(二)多数学生可能对判断变形是否是因式分解理解不到位。

以上就是八年级数学下册教案的全部内容,1、公认的真命题称为公理,推理的过程称为证明,经过证明的真命题称为定理。2.判断一个命题是否是真命题,可用已有的几何知识及公理进行推理证明,判断一个命题是否是假命题则可用举反例的办法。

猜你喜欢