必修二数学公式?圆锥:S=πr²+πrl=πr(r+l)圆台:S=πr²+πR²+½(2πr+2πR)*l 球:S=4πr²(圆台的r表示上圆半径 R表示底面半径。l表示母线)体积:正方体、长方体、那么,必修二数学公式?一起来了解一下吧。
1,正方体
因为6个面全部相等,所以正方体的表面积=一个面的面积×6=棱长×棱长×6
设一个正方体的棱长为a,则它的表面积s:
s=6×a×a
正方体的体积=棱长×棱长×棱长;设一个正悄核羡方体的棱长为a,则它的体积为:
v=a×a×a
2,长方体
因为相对的2个面相等,所以先算上下两个面,再算前后两个面,最后算左右两个面。
设一个长方体的长、宽、高分别为a、b、h,则它的表面积s:
s
=
2ab
2ah
2bh
=
2
(
ab
ah
bh
)
长方体的体积=长×宽×高
设一个长方体的长、宽、高分别为a、b、h,则它的体积v:
v
=
abh
3,正四面体
正四面体就是由四个全等正三角形围成的空启拍间封闭图形。它有6条棱,4个顶点。正四面体是最简单的正多面体。当其棱长为a时,其体积等于(√2/12)a^3,表面积等于√3*a^2。
4,圆柱体
圆柱的表面积=2×底面积+侧面积
侧面展开以后是一个矩形,长是底面周长,宽是高,所以侧面积=底面周长×高
设一个圆柱底面半径为r,高为h,则表面积s:
s=2πr^2;+2πrh=2πr(r
h)
圆柱的氏羡体积跟长方体、正方体一样,都是底面积×高设一个圆柱底面半径为r,高为h,则体积v:v=πr^2*h
5,球体
半径是r的球的体积
计算公式是:v=(4/3)πr^3(三分之四乘以π乘以r的三次方)。
记住口诀:森埋奇变偶不变,符号看象限。
奇偶是指所加角度是90°的奇偶倍,变是指sin=>cos,cos=>sin。如sin(90°-x)就是1倍,奇数,sin变成cos;cos(x+180°)就是2倍,偶数,cos不变;……
符号是指将x看做是锐角,蚂春裤看变后闷简的角度是在哪个象限,定出正负号,如sin(90°+x)就是90°+锐角,在第二象限,sin是负号,所以sin(90°+x)=-cosx;cos(180-x)=cosx
高中前高衫念宏数学合集
1znmI8mJTas01m1m03zCRfQ
1234
简介:高中数学优质资料慧腔,包括:试题试卷、课件、教材、、各大名师网校合集。
表面积:
圆柱:S=2πr²+2πrl=2πr(r+l)
圆锥:S=πr²+πrl=πr(r+l)
圆台:S=πr²颤蠢灶+πR²+½(2πr+2πR)*l
球:S=4πr²
(圆台的r表示上圆半径 R表示底面半径。l表示母线)
体积:
正方体、长方体、圆柱:V=Sh
圆锥:V=(3分之茄扮一)档腊Sh
圆台:V=(3分之一)*(S`+S`S开根号+S)h
球:V=(3分之4)πr³
公式是学习高中数学必备的重要,也是学习数学的基础。以下是我为您整理的关于高一数学必修2公式总结的相关资料,希望对您有所帮助。
高一数学必修2公式总结
立体几何中有4个公理:
公理1 如果一条直线上的两点在一个平面内,那么这条直线在此平面内.
公理2 过不在一条直线上的三点,有且只有一个平面.
公理3 如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.
公理4 平行于同一条直线的两条直线平行.
立方图形
立体几何公式
名称 符号 面积S 体积V
正方体 a——边长 S=6a^2 V=a^3
长方体 a——长 S=2(ab+ac+bc) V=abc
b——宽
c——高
棱柱 S——底面积 V=Sh
h——高
棱锥 S——底面积 V=Sh/3
h——高
棱台 S1和S2——上、下底面积 V=h〔S1+S2+√(S1^2)/2〕/3
h——高
拟柱体 S1——上底面积 V=h(S1+S2+4S0)/6
S2——下底面积
S0——中截面积
h——高
圆柱 r——底半径 C=2πr V=S底h=∏rh
h——高
C——底面周长
S底——底面积 S底=πR^2
S侧——侧面积 S侧=Ch
S表——表面积 S表=Ch+2S底
S底=πr^2
空心圆柱 R——外圆半径
r——内圆半径
h——高 V=πh(R^2-r^2)
直圆锥 r——底半径
h——高 V=πr^2h/3
圆台 r——上底半径
R——下底半径
h——高 V=πh(R^2+Rr+r^2)/3
球 r——半径
d——直径 V=4/3πr^3=πd^2/6
球缺 h——球缺高
r——球半径
a——球缺底半径 a^2=h(2r-h) V=πh(3a^2+h^2)/6 =πh2(3r-h)/3
球台 r1和r2——球台上、下底半径
h——高 V=πh[3(r12+r22)+h2]/6
圆环体 R——环体半径
D——环体直径
r——环体截面半径
d——伏携搏环体截面直径 V=2π^2Rr^2 =π^2Dd^2/4
桶状体 D——桶腹直径
d——桶底直径
h——桶高 V=πh(2D^2+d2^)/12 (母线是圆弧形,圆心是桶的中心)
V=πh(2D^2+Dd+3d^2/4)/15 (母线是抛物线形)
平面解析几何包含一下几部分:
一 直角坐标
1.1 有向线段
1.2 直线上的点的直角坐标
1.3 几个基本公式
1.4 平面上的点的直角坐标
1.5 射影的基本原理
1.6 几个基本公式
二 曲线与议程
2.1 曲线的直解坐标方程的定义
缺祥2.2 已各曲线,求它的方程
2.3 已知曲线的方程,描绘曲线
2.4 曲线的交点
三 直线
3.1 直线的倾斜角和斜率
3.2 直线的方程
Y=kx+b
3.3 直线到点的有向距离隐冲
3.4 二元一次不等式表示的平面区域
3.5 两条直线的相关位置
3.6 二元二方程表示两条直线的条件
3.7 三条直线的相关位置
3.8 直线系
四 圆
4.1 圆的定义
4.2 圆的方程
4.3 点和圆的相关位置
4.4 圆的切线
4.5 点关于圆的切点弦与极线
4.6 共轴圆系
4.7 平面上的反演变换
五 椭圆
5.1 椭圆的定义
5.2 用平面截直圆锥面可以得到椭圆
5.3 椭圆的标准方程
5.4 椭圆的基本性质及有关概念
5.5 点和椭圆的相关位置
5.6 椭圆的切线与法线
5.7 点关于椭圆的切点弦与极线
5.8 椭圆的面积
六 双曲线
6.1 双曲线的定义
6.2 用平面截直圆锥面可以得到双曲线
6.3 双曲线的标准方程
6.4 双曲线的基本性质及有关概念
6.5 等轴双曲线
6.6 共轭双曲线
6.7 点和双曲线的相关位置
6.8 双曲线的切线与法线
6.9 点关于双曲线的切点弦与极线
七 抛物线
7.1 抛物线的定义
7.2 用平面截直圆锥面可以得到抛物线
7.3 抛物线的标准方程
7.4 抛物线的基本性质及有关概念
7.5 点和抛物线的相关位置
7.6 抛物线的切线与法线
7.7 点关于抛物线的切点弦与极线
7.8 抛物线弓形的面积
八 坐标变换·二次曲线的一般理论
8.1 坐标变换的概念
8.2 坐标轴的平移
8.3 利用平移化简曲线方程
8.4 圆锥曲线的更一般的标准方程
8.5 坐标轴的旋转
8.6 坐标变换的一般公式
8.7 曲线的分类
8.8 二次曲线在直角坐标变换下的不变量
8.9 二元二次方程的曲线
8.10 二次曲线方程的化简
8.11 确定一条二次曲线的条件
8.12 二次曲线系
九 参数方程
十 极坐标
以上就是必修二数学公式的全部内容,圆锥:S=πr²+πrl=πr(r+l)圆台:S=πr²+πR²+½(2πr+2πR)*l 球:S=4πr²(圆台的r表示上圆半径 R表示底面半径。l表示母线)体积:正方体、长方体、。