八下数学平行四边形?(1)如果一个四边形的两组对边分别相等,那么这个四边形是平行四边形。(简述为“两组对边分别相等的四边形是平行四边形”)(2)如果一个四边形的一组对边平行且相等,那么这个四边形是平行四边形。(简述为“一组对边平行且相等的四边形是平行四边形”)(3)如果一个四边形的两条对角线互相平分,那么,八下数学平行四边形?一起来了解一下吧。
1.周长等于(5+3)X2=16
2.平行四边形的外角是38°,那么有两个内角都是180°-38°=142°
另外两个角就是38°
1.证明△aef全等于△ced
∵af平行于dc
∴∠afe=∠dce
又∵e为ad中电
∴ae=de
∵∠aef于∠dec是对顶角。所以相等
∴△aef全等于△ced
∴af=dc
1∵平行四边行对边相等
∴周长=AB+BC+CD+DA=2AB+2BC=16
2外角38°,其角的内角为180°-38°=142°
∵是平行四边形,所以对角相等,也为142°
而其余两角都为38°
平行四边形的判定方法
1.两组对边分别平行的四边形是平行四边形(定义判定法);
平行四边形的判定
平行四边形的判定
2.一组对边平行且相等的四边形是平行四边形;
3.对角线互相平分的四边形是平行四边形;
4.两组对角分别相等的四边形是平行四边形;(例题3)
5.所有邻角(每一组邻角)都互补的四边形是平行四边形;
6.两组对边分别相等的四边形是平行四边形。
(1):平行四边形对边分别相等;
(2):平行四边形对边分别平行;
(3):平行四边形对角分别相等;
(4):平行四边形对角线互相平分;
(5):平行四边形邻角互补
这是性质
判定则为性质逆命题
问题一:怎样学好八年级数学的平行四边形初二第一学期接触到的重要几何图形是三角形。之后学生重点学习了三角形全等的知识。到了初二的第二学期,现在这个时间初二学生都学到《四边形》这一章。这一章是初二几何的重点,要引起各位同学的重视。要学好这一章,首先要学好第一节的平行四边形。初学平行四边形,很多同学感到无从下手. 针对这一问题,下面给同学们以下两点建议: 一. 用好数学思想方法 数学思想被称为数学的“灵魂”,也是学习数学和解决数学问题的的指导思想,数学思想的具体落实通过数学方法得以实现,二者相辅相成,密不可分. 学习平行四边形,用得最多的要数转化的数学思想方法了. 通过平行四边形的定义,我们很自然的联想到平行线的知识,这就意味着平行四边形这一新知识,其中的部分内容可以转化为平行线这一旧知识. 比如,利用平行线的性质定理“两直线平行,同旁内角互补”,便可以推导出平行四边形的一个重要的性质定理“平行四边形的对角相等”. 如果把我们此前所学的几何知识归结为两大块知识的话,就是直线型与三角形. 要想进一步深入研究平行四边形,就得借助三角形的知识. 如何实现这一步新旧知识的转化呢?我们可以采用添加对角线的方法,如果添加一条,则把平行四边形分成两个全等三角形,于是能够证明平行四边形的第二条性质定理“平行四边形的对边相等”;如果添加两条对角线,则把平行四边形分成四个最基本的小三角形,对等的两个分别全等,于是能够证明平行四边形的第三条性质定理“平行四边形的对角线互相平分”. 因此,对角线成为解决平行四边形问题中的一种重要的辅助线. 这种转化的数学思想方法不但能推导新定理,而且能解决其他问题. 二、找准知识的认识角度 在本章对平行四边形的学习中,与以前所学相同之处,在于学过定义后,接着研究它的性质和判定. 但是由于平行四边形的特殊性,在研究它的性质定理和判定方法时,主要从三个不同角度加以分析:边、角与对角线. 对于边,从位置和大小两方面探讨邻边或对边的关系特征;对于角,以邻角和对角两方面为主,探讨其大小关系或具体度数;对于对角线,则探讨两条对角线之间的位置和大小关系,以及它们与边、角之间的关系. 除了边、角与对角线三个主要研究角度外,还涉及面积计算、对称特征等项内容. 这些不但适用于一般平行四边形,也适用于特殊的平行四边形比如矩形、菱形和正方形等,还适用于其他的一些四边形比如梯形等的研究. 所以同学们可以在以后的学习中,从以上几个不同角度,对所学的四边形知识加以总结,一定会大有裨益的。
以上就是八下数学平行四边形的全部内容,·1平行四边形对边相等,所以CD=AB,BC=AD,周长C=AB+BC+CD+AD=16 平行四边形两相邻内角和180度,而一个外角38度,所以这个外角对应的内角为142度。此内角相邻的内角为38度,所以这个平行四边形每个内角度数是142度,38度,142度。