目录高中化学焰色反应颜色大全 高中化学焰色反应口诀 风化是物理变化还是化学变化 泥土烧成瓷器是化学变化吗 焰色反应原理
常见的焰色反应颜色有高旦:
含钠离子Na:黄
含锂离子Li:紫红
含钾离子K:浅紫(透过蓝色钴玻璃)
含铷离子Rb:紫
含钙离子Ca:砖红色
含锶离子Sr:洋红
含铜离子Cu:绿
含钡离子Ba:黄绿
含铯离子Cs:紫红
含铁离子Fe:无色
其他焰色反应
碱金属和其它一些金属及其相应离子所发生的焰色反应可用于分析物质的组成,进行有关物质的鉴别.如:钠或含有Na+的戚拍扰化合物焰色反应为黄色;钾或含K+的化合物焰色反应为浅紫色(透过钴玻璃)。
镁、铝,还有铁、铂、镍等金属无焰色。
焰色反应中释放出的各种可见光实质上是由于热源的温度很高,做焰色反应的金属离子受热后能量升高,激发电子跃迁,贺答能级间的能量差以可见光的形式释放出来,这个过程没有新的物质生成,只是电子的跃迁,应该属于物理变化。所以,虽然称作焰色反应,实际上并不是化学变化,而是物理变化。
焰色反应在使用中只能用盐酸来洗铂丝。
原因:生成金属氯化物,而一般金属氯化物在高温时易挥发。
以上内容参考-焰色反应
焰色反应是物理变化。焰色是因为金属原子或离子手芹外围电子发生跃迁,然后回落到原位时放出的能量。由于电子回落过程放出能量的频率不同而产生不同的光。所以焰色反应属于物理变化(但单质进行焰色反应时,由于金属活泼则易生成氧化物,此时既有毕简毕物理变化又有化学变化)咐败。
是物理变化。
焰色反应是某些金属或它们的挥发性化合物在无色火焰中灼烧时使火焰呈现特征的颜色的反应.有些金属或它们的化合物在灼烧时能使火焰呈特殊颜色迟困。这是因为这些金属元素的原子在接受火焰提供的能量时,其外层电子将会脊旦迹被激发到能量较高的激发态。处于激发态的外层电子不稳定,又要跃迁到能量较低的基态。不同元素原子的外层电子具有着不同能量的基态和激发态。在这个过程中就会产生不同的波长的樱并电磁波,如果这种电磁波的波长是在可见光波长范围内,就会在火焰中观察到这种元素的特征颜色。利用元素的这一性质就可以检验一些金属或金属化合物的存在。
焰色反应是物理变化。
1、焰色反应中,当碱金属及其盐在火焰上灼烧时,原子中的电子吸收了能量,从能量较低的轨道跃迁到能中猜量较高的轨道,但处于能量较高轨道上的电子是不稳定的,很快跃迁回能量较低的轨道,这时就将多余的能量以光的形式放出。
2、而放出的光的波长在可见光范围内(波长为400nm~760nm),因而能使火焰呈现颜色。在焰色反应实验中,,不同金属或它们的化合物在灼烧时会放出多种不同波长的光,在肉眼能感知的可见光范围内,因不同光的波长不同,呈现的颜色也就存在差异。
3、在这一过程中,焰色反应并未生成新物质,因而是物理变化。
焰色反应的应用:
1、利用焰色反应可检验某些用常规化学方法不能鉴定的金属迟培此元素。
2、不码迅同的金属及其化合物对应不同的焰色反应且颜色艳丽多彩,因此可用于制作节日燃放的烟花等。
物理变化介绍:
1、物理变化,指物质的状态虽然发生了变化,但一般说来物质本身的组成成分却没有改变。例如:位置、体积、形状、温度、压强的变化,以及气态、液态、固态间相互转化等。
2、还有物质与电磁场的相互作用,光与物质的相互作用,以及微观粒子(电子、原子核、基本粒子等)间的相互作用与转化,都是物理变化。
焰色反应是物理变化,焰色反应并不是金属元素本身燃烧而产生各种颜色火焰,它是金属原子或离子的外围电子受热时获得能量,使电子从低能级轨道被激发跃迁至高能级轨道,处在高能级轨道的这些电子极不稳定,瞬间又回迁到低能级轨道。
物理变化介绍
物理变化,指物质的状态虽然发生了变化,但一般说来物质本身的组成成分却没有改变。例如:位置、体积、形状、温度、压强的变化,以及气态、液态、固态间相互转化等。还有物扰岩质与电磁场的相互作用,光与物质的相互作用,以及微观粒子(电子、原子核、基本粒子等)间的相互作用与转化,都是物理变化。
化学变化介绍
化学变化是指相互接触的分子间发生原子或电子的转换或转移,生成新的分子并伴有能量的变化的过程,其实质是旧键的断咐或裂和新键的生成。
化学变化过程中总伴随着物理变化。在化学变化过程中通常有发光、放热、也有吸热现象等。按照原子碰撞理论,分子间发生化学变化是通过碰撞完成的,要完成碰撞发生反应的分子需满足两个条件:(衡李伍1)具有足够的能量;(2)正确的取向。因为反应需克服一定的分子能垒,所以须具有较高的能量来克服分子能垒。两个相碰撞的分子须有正确的取向才能发生旧键断裂。