当前位置: 首页 > 所有学科 > 数学

初中数学题大全,初三数学专题训练

  • 数学
  • 2023-07-25

初中数学题大全?数学初中测试题及答案 篇1 一、填空题。(28分)1.三峡水库总库容39300000000立方米,把这个数改写成“亿”作单位的数是( )。2.79 的分数单位是( ),再增加( )个这样的单位正好是最小的质数。3.在72.5%,79 ,那么,初中数学题大全?一起来了解一下吧。

初中数学经典题目

1.

延长AD交BC延长线毁唯竖于纤大O,则OD:DA=8:(24-8)所以AO=30,所以tan角B=30:24=5/山州4

所以y=24-x/(5/4)=24-4x/5

2.

xy=x*(24-4x/5)=24x-4x^2/5=-4/5(x^2-30x+225)+180=-4/5(x-15)^2+180

所以x=15时,面积最大=180,此时y=12

初中数学经典题目及解析

(1.)某种股票经过股东大会决定每10股配六股,配股价为每股5元,配股后的股价为每股15.5元,问配股前的股价是每股多少元?(列方程,一元二元都可以)

设前的股价是X

10X+6*5=15。5*16

X=21。8

答:配股前的股价是21。8元

(2)小明用每小时8千米的速度到某地尘洞郊游,回来时走比原路长3千米的另一条路线,速度为每小时9千米,这样回来比去时多用八分之一小时,求原路长?(同上)

设原路厅兄锋长是X

[X+3]/9-X/8=1/8

X=15

答:原路长是15千米

(3)有一片牧场,草每天都在匀速生长(草每天的增长量相等),如果放牧24头牛,则6天吃完牧草,如果放牧21头牛则8天吃完牧草,设每头牛每天吃草的量是相等的,问:

① 如果放牧16头牛几天可以吃完牧草?

② 要使草永远吃不完,最多只能放牧几头牛?

设一个牛一天吃的草是单位“1”

那么每天生长的草是[21*8-24*6]/[8-6]=12单位

原来有草是24*6-6*12=72单位

72/[16-12]=23

答:16个牛要吃23天

12/1=12

要想草永远吃不完,最多能放12个牛。

⑷某地的A、B两个学校共录取考生150人,而报考两校的人数比两个学校规定的录取人数之和的20倍还多80人,与上一年相比报考两校的人数增加12%,报考A校的增加6%,报考B校的增加17%,问今年报考A、B两校的各是多少人?

150*20+80=3080

3080/[1+12%]=2750

设去年报A的有X人,则报B的有2750-X

X*[1+6%]+[2750-X]*[1+17%]=3080

X=1250

那么今年报A的人有1250*[1+6%]=1325人

报B的人有[2750-1250]*1。

初三数学专题训练

数学初中测试题及答案 篇1

一、填空题。(28分)

1.三峡水库总库容39300000000立方米,把这个数改写成“亿”作单位的数是( )。

2.79 的分数单位是( ),再增加( )个这样的单位正好是最小的质数。

3.在72.5%,79 ,0.7255,0.725 中,最大的数是( ),最小的数是 ( )。

4.把3米长的绳子平均分成8段,每段是全长的( ),每段长( )。

5.3 ÷( )=9:( )= =0.375=( )% (每空0.5分)

6.饮料厂郑备从一批产品中抽查了40瓶饮料,其中8瓶不合格,合格率是( ) 。

睁丛闹7.0.3公顷=( )米2 1800 厘米3 =( )分米3

2.16米 =( )厘米 3060克=( )千克

8.第30届奥运会于2012年在英国伦敦举办,这一年的第一季度有( )天。

9.汽车4小时行360千米,路程与时间的比是( ),比值是( )。

10.在比例尺是1∶15000000的地图上,图上3厘米表示实际距离( )千米。

11.一枝钢笔的单价是a元,买6枝这样的钢笔需要( )元。

12.有一张长48厘米,宽36厘米的长方形纸,如果要裁成若干同样大小的正方形而无剩余,裁成的小正方形的边长最大是( )厘米。

初三数学试题库

/>18-6/(-3)*(-2)-|-9|

(5+3/8*8/30/(-2)-3

(-84)/2*(-3)/(-6)

1/2*(-4/15)/2/3

|-3x+2y-5x-7y|-|-9x+2y|

-5+21*8/2-6-59

68/21-8-11*8+61

-2/9-7/9-56

4.6-(-3/4+1.6-4-3/4)

1/2+3+5/6-7/12

[2/3-4-1/4*(-0.4)]/1/3+2

22+(-4)+(-2)+4*3-√64-5^2

-2*8-8*1/2+8/1/8

(2/3+1/2)/(-1/12)*(-12)

(-28)/(-6+4)+(-1)

2/(-2)+0/7-(-8)*(-2)

(1/4-5/6+1/3+2/3)/1/2

18-6/(-3)*(-2)

(5+3/8*8/30/(-2)-3

(-84)/2*(-3)/(-6)

1/2*(-4/15)/2/3+√9

-3x+2y-5x-7y+

-5+21*8/2-6-59

68/21-8-11*8+61

-2/9-7/9-56

4.6-(-3/4+1.6-4-3/4)

1/2+3+5/6-7/12

[2/3-4-1/4*(-0.4)]/1/3+2

22+(-4)+(-2)+4*3

-2*8-8*1/2+8/1/8

(2/3+1/2)/(-1/12)*(-12)

(-28)/(-6+4)+(-1)

2/(-2)+0/7-(-8)*(-2)

(1/4-5/6+1/3+2/3)/1/2

18-6/(-3)*(-2)

(5+3/8*8/30/(-2)-3

(-84)/2*(-3)/(-6)

1/2*(-4/15)/2/3

-3x+2y-5x-7y-(-3^2+5^7)

-1+2-3+4-5+6-7+√9

-50-28+(-24)-(-22)

-19.8-(-20.3)-(+20.2)-10.8;

0.25- +(-1 )-(+3 ).

-1-23.33-(+76.76)

1-2*2*2*2-5^2+(6^2-5^2)

(-6-24.3)-(-12+9.1)+(0-2.1)

-1+8-7+5^7-(-5+√9)

125*3+125*5+25*3+25

9999*3+101*11*(101-92)

(23/4-3/4)*(3*6+2)

3/7 × 49/9 - 4/3

8/9 × 15/36 + 1/27

12x*5/6y–2/9y*|3x-2y|

8×5/4+1/4*|-7-8|

6÷ 3/8 – 3/8 ÷6

4/7 × 5/敬乎9 + 3/7 × 5/9

5/2 -( 3/2 + 4/5 )

7/8 + ( 1/8 + 1/9 )

9 × 5/6 + 5/6

3/4 × 8/9 - 1/3

7 × 5/49 + 3/14

6 ×(亮棚悉 1/2 + 2/3 )

8 × 4/5 + 8 × 11/5

31 × 5/6 – 5/6

9/7 - ( 2/7 – 10/21 )

5/9 × 18 – 14 × 2/7

4/5 × 25/16 + 2/3 × 3/4

14 × 8/7 – 5/6 × 12/15

17/32 – 3/4 × 9/24

3^45 × 2/9 + 1/3

5/7 × 3/和瞎25 + 3/7

3/14 ×2/3 + 1/6

1/5 × 2/3 + 5/6

5/3 × 11/5 + 4/3

9/22+1/11÷1/2-√169

45^8 × 2/3 + 1/3 × 15

7/19 + 12/19 × 5/6

1/4 + 3/4 ÷ 2/3

8/7 × 21/16 + 1/2

101^4×(-1/5–1/5×21)

50+√160÷40^5

120-144÷18+35

347+45×2-4160÷52

37^2(58+37)÷(64-9×5)

95÷(64-45)

178-145÷5×6+42

812-700÷(9+31×11)

85+14×(14+208÷26)

120-36×4÷18+35

(58+37)÷(64-9×5)

(6.8-6.8×0.55)÷8.5

0.12× 4.8÷0.12×4.8

(3.2×1.5+2.5)÷1.6

6-1.6÷4= 5.38+7.85-5.37=

7.2÷0.8-1.2×5= 6-1.19×3-0.43=

6.5×(4.8-1.2×4)=

5.8×(3.87-0.13)+4.2×3.74

32.52-(6+9.728÷3.2)×2.5

[(7.1-5.6)×0.9-1.15] ÷2.5

5.4÷[2.6×(3.7-2.9)+0.62]

12×6÷(12-7.2)-6

12×6÷7.2-6

0.68×1.9+0.32×1.9

58+370)÷(64-45)

420+580-64×21÷28

136+6×(65-345÷23)

15-10.75×0.4-5.7

18.1+(3-0.299÷0.23)×1

(6.8-6.8×0.55)÷8.5

0.12× 4.8÷0.12×4.8

(3.2×1.5+2.5)÷1.6

3.2×6+(1.5+2.5)÷1.6

0.68×1.9+0.32×1.9

10.15-10.75×0.4-5.7

5.8×(3.87-0.13)+4.2×3.74

32.52-(6+9.728÷3.2)×2.5

[(7.1-5.6)×0.9-1.15] ÷2.5

5.4÷[2.6×(3.7-2.9)+0.62]

12×6÷(12-7.2)-6

12×6÷7.2-6

33.02-(148.4-90.85)÷2.5

76.(25%-695%-12%)*36

7/4*3/5+3/4*2/5

1-1/4+8/9/7/9

7+1/6/3/24+2/21

8/15*3/5

3/4/9/10-1/6

8/3+1/2)/5/6-1/3]/1/7

9/5+3/5/2+3/4

8^6(2-2/3/1/2)]*2/5

8+5268.32-2569

3+456-52*8

87.5%+6325

8/2+1/3+1/4

89+456-78

5%+. 3/7 × 49/9 - 4/3

9 × 15/36 + 1/27

2× 5/6 – 2/9 ×3

3× 5/4 + 1/4

94÷ 3/8 – 3/8 ÷6

95/7 × 5/9 + 3/7 × 5/9

6/2 -( 3/2 + 4/5 )

8 + ( 1/8 + 1/9 )

8 × 5/6 + 5/6

1/4 × 8/9 - 1/3

10× 5/49 + 3/14

1.5 ×( 1/2 + 2/3 )

2/9 × 4/5 + 8 × 11/5

3.1 × 5/6 – 5/6

4/7 - ( 2/7 – 10/21 )

19 × 18 – 14 × 2/7

5 × 25/16 + 2/3 × 3/4

4 × 8/7 – 5/6 × 12/15

7/32 – 3/4 × 9/24

2/3÷1/2-1/4×2/5

2-6/13÷9/26-2/3

2/9+1/2÷4/5+3/8

10÷5/9+1/6×4

1/2×2/5+9/10÷9/20

5/9×3/10+2/7÷2/5

1/2+1/4×4/5-1/8

3/4×5/7×4/3-1/2

23-8/9×1/27÷1/27

18×5/6+2/5÷4

11/2+3/4×5/12×4/5

8/9×3/4-3/8÷3/4

5/8÷5/4+3/23÷9/11

1.2×2.5+0.8×2.5

8.9×1.25-0.9×1.25

12.5×7.4×0.8

9.9×6.4-(2.5+0.24)

6.5×9.5+6.5×0.5

0.35×1.6+0.35×3.4

0.25×8.6×4

6.72-3.28-1.72

0.45+6.37+4.55

5.4+6.9×3-(25-2.5)

2×41846-620-380

4.8×46+4.8×54

0.8+0.8×2.5

1.25×3.6×8×2.5-12.5×2.4

28×12.5-12.5×20

23.65-(3.07+3.65)

(4+0.4×0.25)8×7×1.25

1.65×99+1.65

27.85-(7.85+3.4)

48×1.25+50×1.25×0.2×8

7.8×9.9+0.78

(1010+309+4+681+6)×12

3×9146×782×6×854

5.15×7/8+6.1-0.60625

3/7 × 49/9 - 4/3

8/9 × 15/36 + 1/27

12× 5/6 – 2/9 ×3

8× 5/4 + 1/4

6÷ 3/8 – 3/8 ÷6

4/7 × 5/9 + 3/7 × 5/9

5/2 -( 3/2 + 4/5 )

7/8 + ( 1/8 + 1/9 )

9 × 5/6 + 5/6

3/4 × 8/9 - 1/3

7 × 5/49 + 3/14

6 ×( 1/2 + 2/3 )

8 × 4/5 + 8 × 11/5

31 × 5/6 – 5/6

9/7 - ( 2/7 – 10/21 )

5/9 × 18 – 14 × 2/7

4/5 × 25/16 + 2/3 × 3/4

14 × 8/7 – 5/6 × 12/15

17/32 – 3/4 × 9/24

3 × 2/9 + 1/3

5/7 × 3/25 + 3/7

3/14 × 2/3 + 1/6

1/5 × 2/3 + 5/6

9/22 + 1/11 ÷ 1/2

5/3 × 11/5 + 4/3

45 × 2/3 + 1/3 × 15

7/19 + 12/19 × 5/6

1/4 + 3/4 ÷ 2/3

8/7 × 21/16 + 1/2

101 × 1/5 – 1/5 × 21

50+160÷40 (58+370)÷(64-45)

120-144÷18+35

347+45×2-4160÷52

(58+37)÷(64-9×5)

95÷(64-45)

178-145÷5×6+42 420+580-64×21÷28

812-700÷(9+31×11)

(136+64)×(65-345÷23)

85+14×(14+208÷26)

(284+16)×(512-8208÷18)

120-36×4÷18+35

(58+37)÷(64-9×5)

(6.8-6.8×0.55)÷8.5

0.12× 4.8÷0.12×4.8

(3.2×1.5+2.5)÷1.6

3.2×(1.5+2.5)÷1.6

6-1.6÷4= 5.38+7.85-5.37=

7.2÷0.8-1.2×5= 6-1.19×3-0.43=

6.5×(4.8-1.2×4)= 0.68×1.9+0.32×1.9

10.15-10.75×0.4-5.7

5.8×(3.87-0.13)+4.2×3.74

32.52-(6+9.728÷3.2)×2.5

[(7.1-5.6)×0.9-1.15] ÷2.5

5.4÷[2.6×(3.7-2.9)+0.62]

12×6÷(12-7.2)-6 (4)12×6÷7.2-6

102^2×4.5+8^5-√529

7.8×6.9+2.2×6.9

5.6×0.25

8×(20-1.25)

127+352+73+44

89+276+135+33

25+71+75+29 +88

243+89+111+57

9405-2940÷28×21

920-1680÷40÷7

690+47×52-398

148+3328÷64-75

360×24÷32+730

2100-94+48×54

51+(2304-2042)×23

4215+(4361-716)÷81

(247+18)×27÷25

36-720÷(360÷18)

1080÷(63-54)×80

(528+912)×5-6178

8528÷41×38-904

264+318-8280÷69

(174+209)×26- 9000

814-(278+322)÷15

1406+735×9÷45

3168-7828÷38+504

796-5040÷(630÷7)

285+(3000-372)÷36

1+5/6-19/12

3x(-9)+7x(-9

(-54)x1/6x(-1/3)

18.1+(3-0.299÷0.23)×1

(6.8-6.8×0.55)÷8.5

0.12× 4.8÷0.12×4.8

(3.2×1.5+2.5)÷1.6

3.2×(1.5+2.5)÷1.6

5.6-1.6÷4

5.38+7.85-5.37

7.2÷0.8-1.2×5

6-1.19×3-0.43

6.5×(4.8-1.2×4)

0.68×1.9+0.32×1.9

115-10.75×0.4-5.7

5.8×(3.87-0.13)+4.2×3.74

32.52-(6+9.728÷3.2)×2.5

[(7.1-5.6)×0.9-1.15] ÷2.5

5.4÷[2.6×(3.7-2.9)+0.62]

12×6÷(12-7.2)-6

12×6÷7.2-6

33.02-(148.4-90.85)÷2.5

二.解方程

2x=7(x-5)

8(3x+3)=240

4.74+4x-2.5x=8.1

(2.81+x)÷2.81=1

15x-30=16(x-2)

(-3)^3-3^3

(-1)^2-5.6

2^2+3^3-4^4

(2^4-3^2)^3-5^5

[(1.6^2-2^3)-2.1]^2

(5.66×2)^2-15^2

(-15)^x=225,x=?

[(-4)^2-4^2]×2^2

[(-5.6)^2+3]^2

[5.6^2+(-5.6)^2]×(-1)^2

3x+28-x=56

1.5x+6=3.75

2(3.6x+2.8)=-1.6

9.5x+9.5=19

18(x-35)=-36

x+7-(-36+8^2)/2=8+7^4/3

a-7-98+7a=3.2*5a

89/2+35/6x=3*9+2^3/5+7x

3X+189/3=521/2

4Y+119*^3=22/11

3X*189=5*4^5/3

8Z/6=458/5

3X+77=59

4Y-6985=81

87X*13=5

7Z/93=41

15X+863-65X=54

58Y*55=27489

7(2x-1)-3(4x-1)=4(3x+2)-1

(5y+1)+ (1-y)= (9y+1)+ (1-3y)

[-6(-7^4*8)-4]=x+2

20%+(1-20%)(320-x)=320×40%

2(x-2)+2=x+1

2(x-2)-3(4x-1)=9(1-x)

11x+64-2x=100-9x

15-(8-5x)=7x+(4-3x)

3(x-7)-2[9-4(2-x)]=22

3/2[2/3(1/4x-1)-2]-x=2

2x+7^2=157

1)判断题:

判断下列方程是否是一元一次方程:

①-3x-6x2=7( )

③5x+1-2x=3x-2 ( )

④3y-4=2y+1. ( )

判断下列方程的解法是否正确:

①解方程3y-4=y+3

3y-y=3+4,2y=7,y=3.5

②解方程:0.4x-3=0.1x+2

0.4x+0.1x=2-3;0.5x=-1,x=-2

③解方程

5x+15-2x-2=10,3x=-3,x=-1;

④解方程

2x-4+5-5x=-1,-3x=-2,x= .( )

2)填空题:

(1)若2(3-a)x-4=5是关于x的一元一次方程,则a≠_

(2)关于x的方程ax=3的解是自然数,则整数a的值为_

(3)方程5x-2(x-1)=17 的解是_

(4)x=2是方程2x-3=m- 的解,则m=_ .

(5)若-2x2-5m+1=0 是关于x的一元一次方程,则m=_ .

(6)当y=_ 时,代数式5y+6与3y-2互为相反数.

(7)当m=_ 时,方程 的解为0.

(8)已知a≠0.则关于x的方程3ab-(a+b)x=(a-b)x的解为______ .

3)选择题:

(1)方程ax=b的解是( ).

A.有一个解x= B.有无数个解

C.没有解 D.当a≠0时,x=

(2)解方程 ( x-1)=3,下列变形中,较简捷的是( )

A.方程两边都乘以4,得3( x-1)=12

B.去括号,得x- =3

C.两边同除以 ,得 x-1=4

D.整理,得

(3)方程2- 去分母得( )

A.2-2(2x-4)=-(x-7) B.12-2(2x-4)=-x-7

C.12-2(2x-4)=-(x-7) D.以上答案均不对

(4)若代数式 比 大1,则x的值是( ).

A.13 B. C.8 D.

(5)x=1.5是方程( )的解.

A.4x+2=2x-(-2-9)

B.2{3[4(5x-1)-8]-2}=8

C.4x+9 =6x+6

4)解答下列各题:

(1)x等于什么数时,代数式 的值相等?

(2)y等于什么数时,代数式 的值比代数式 的值少3?

(3)当m等于什么数时,代数式2m- 的值与代数式 的值的和等于5?

(4)解下列关于x的方程:

①ax+b=bx+a;(a≠b);

三.化简、化简求值

化间求值:

1、-9(x-2)-y(x-5)

(1)化简整个式子.

(2)当x=5时,求y的解.

2、5(9+a)×b-5(5+b)×a

(1)化简整个式子.

(2)当a=5/7时,求式子的值.

3、62g+62(g+b)-b

(1)化简整个式子.

(2)当g=5/7时,求b的解.

4、3(x+y)-5(4+x)+2y

(1)化简整个式子.

5、(x+y)(x-y)

(1)化简整个式子.

6、2ab+a×a-b

(1)化简整个式子.

7、5.6x+4(x+y)-y

(1)化简整个式子.

8、6.4(x+2.9)-y+2(x-y)

(1)化简整个式子.

9、(2.5+x)(5.2+y)

(1)化简整个式子.

10、9.77x-(5-a)x+2a

(1)化简整个式子.

把x=-2, y=0.1, a=4, b=1代入下列式子求值

3(x+2)-2(x-3)

5(5+a)×b-5(5+b)×a

62a+62(a+b)-b

3(x+y)-5(4+x)+2y

(x+y)(x-y)

2ab+a×a-b

5.6x+4(x+y)-y

6.4(x+2.9)-y+2(x-y)

(2.5+x)(5.2+y)

9.77x-(5-a)x+2a

初中数学经典大题150道

初中数学基础知识测试题

学校 姓名 得分

一、填空题(本题共30小题,每小题2分,满分60分)

1、 和 统称为实数.

2、方程 - =1的解为 .

3、不等式组 的解集是 .

4、伍分和贰分的硬币共100枚,值3元2角.若设伍分硬币有x枚,贰分硬币有y枚,则可得方程组 .

5、计算:28x6y2÷7x3y2= .

6、因式分解:x3+x2-y3-y2= .

7、当x 时,分式 有意义;又当x 时,其值为零.

8、计算: + = ;(x2-y2)÷ = .

9、用科学记数法表示:—0.00002008= ;121900000= .

10、 的平方根为 ;- 的立方根为 .

11、计算: - = ;(3+2 )2= .

12、分母有理化: = ; = .

13、一块长8cm,宽6cm的长方形铁片,在四个角各剪去一个边长相等的小正方形,做成一个长方体无盖的盒子,使它的底面积为24 cm2 .若设小正方形边长为x cm,则可得方程为 .

14、如果关于x方程2x2-4x+k=0有两个不相等的实数根,那么k的取值范围是 .

15、若x1、x2是方袜岁程2x2+6x—1=0的两个根,则 + = .

16、以 +1和 —1为根的一元二次方程是 .

17、在实数范围内因式分解:3x2-4x-1= .

18、方程x+ =5的解是 .

19、已知正比例函数y=kx,且当x=5时,y=7,那么当x=10时,y= .

20、当k 时,如果反比例函数y= 在它的图象所在的象限内,函数值随x的减小而增大.

21、在直角坐标系中,经过点(-2,1)和(1,-5)的直线的解析式是 .

22、如果k<0,b>0,那么一次函数y=kx+b的图象经过第 象限.

23、如果一个等腰三角形的周长为24cm,那么腰长y(cm)与底长x(cm)之间的函数关系式是 .

24、二次函数y=-2x2+4 x-3的图象的开口向 ;顶点是 .

25、经过点(1,3)、(-1,-7)、(-2,-6)的抛物线的解析式是 .

26、把抛物线y=-3(x-1)2+7向右平移3个单位,向下平移4个单位后,所得到的抛物线的解析式是 .

27、柳营中学某班学生中,有18人14岁,16人15岁,6人16岁,这个班级学生的平均年龄是 岁.

28、当一组数据有8个数从小到大排列时,这组数据的中位数是 .

29、一组数据共有80个数,其中最大的数为168,最小的数为122 .如果在频数分布直方图中的组距为5,则可把这组数据分成 组.

30、样本29、23、30、27、31的标准差是 .

二、填空题(本题共30小题,每小题2分,满分60分)

31、如果两条平行线被第三条直线所截,那么 相等, 互补.

32、命题“两直线平行,同旁内角互补”的题设是 ,

结论是 .

33、若三角形三边长分别是6、11、m,则m的告敬睁取值范围是 .

34、如果一个多边形的内角和为2520°,那么这个多边形是 边形.

35、等腰三角形的 、 、 互稿核相重合.

36、在△ABC中,若∠A=80°,∠B=50°,则△ABC是 三角形.

37、在Rt△ABC中,∠C=90°,∠A=60°.若AC=5cm,则AB= cm.

38、在Rt△ABC中,∠C=90°, 如果AC=3cm,BC=4cm,那么AB边上的高CD= cm.

39、如果一个平行四边形的两个邻角的差为30°,那么这个平行四边形的较大的一个内角为 (度).

40、两组对边分别 的四边形是平行四边形.

41、在菱形ABCD中,若有一个内角为120°,且较短的一条对角线长12cm,则这菱形的周长为 cm.

42、两条对角线 的平行四边形是正方形.

43、在梯形ABCD中,AD‖BC,若AB=DC,则相等的底角是 .

44、顺次连结菱形的四边的中点所得到的图形是 形.

45、在△ABC中,点D、E分别在AB、AC边上,若DE‖BC,AD=5,AB=9,EC=3,则AC= .

46、在△ABC中,点D、E分别在AB、AC边上,AD=2 cm,DB=4cm,AE=3cm, EC=1 cm,因为 且 ,所以△ABC∽△ADE.

47、△ABC的三条中线AD、BE、CF交于点G.如果△AEG的面积为12平方厘米,那么△ABC的面积为 平方厘米.

48、把一个三角形改成和它相似的三角形,如果边长扩大为原来的10倍,那么面积扩大为原来的 倍.

49、如果∠A为锐角,tgA= ,那么ctgA= .

50、计算:sin30°= ;tg60°= .

51、在Rt△ABC中,∠C=90°.如果sinA= ,那么∠B= (度).

52、如果飞机在离地面5000米的高空俯视地面上一个目标时,俯角为30°,那么飞机离目标的距离为 米.

53、斜坡的坡度为1∶4,斜坡的水平宽度为20m,则斜坡的垂直高度为 m.

54、在半径为10cm的圆中,20°的圆心角所对的弧长为 cm.

55、若两圆半径分别为9cm和4cm,圆心距为5cm,则两圆位置关系为 .

56、若直线AB经过⊙O上一点C,且OC⊥AB,则直线AB是⊙O的 .

57、在△ABC中,如果AB=9cm,BC=4cm,CA=7cm,它的内切圆切AB于点D,那么AD= cm.

58、在Rt△ABC中,∠C=90°.如果AC=5cm,BC=12cm,那么△ABC内切圆的半径为 cm.

59、半径分别为5cm和15cm的两圆相外切,其外公切线的长为 cm,连心线与外公切线所夹的锐角为 (度).

60、任何正多边形都是 对称图形,边数是偶数的正多边形又是 对称图形.

答案

一、1、有理数;无理数.2、y=3 .3、x≤- .4、 .5、4x3 .6、(x-y)(x2+xy+y2+x+y).7、≠- ;=1 .8、 ;(x+y)2 .9、-2.008×10-5;1.219×108 .10、±3;- .11、 ;29+12 .12、 ;. .13、(8-2x)(6-2x)=24(或x2-7x+6=0).14、k<2 .15、6 .16、x2-2 x+1=0 .17、(x- )(x- ).18、x=3 .19、14 .20、>0 .21、y=-2x-3 .22、一、二、四 .23、y=- x+12,0<x<12 .24、下;(1,-1).25、y=2x2+5x-4 .26、y=-3(x-4)2+3 .27、14.7 .28、第4和第5个数的平均数.29、10 .30、2 .

二、31、同位角或内错角;同旁内角.32、两直线平行;同旁内角互补.33、5<m<17 .34、16 . 35、顶角的平分线;底边上的中线;底边上的高.36、等腰.37、10 .38、2.4 .39、105°.40、平行(或相等).41、48 .42、垂直且相等.43、∠A=∠D,∠B=∠C.44、矩.45、 .46、∠DAE=∠CAB, = .47、72 .48、100 .49、 .50、 ; .51、30°.52、10000 .53、5 .54、 π.55、内切.56、切线.57、6 .58、2 .59、10 ;30°.60、轴;中心.

《代数的初步知识》基础测试

一 填空题(本题20分,每题4分):

1.正方形的边长为a cm,若把正方形的每边减少1cm,则减少后正方形的面积为

cm2;

2.a,b,c表示3个有理数,用 a,b,c 表示加法结合律是 ;

3.x的 与y的7倍的差表示为 ;

4.当 时,代数式 的值是 ;

5.方程x-3 =7的解是 .

答案:

1.(a-1)2;

2.a+(b+c)=(a+b)+c;

3. x-7y;

4.1;

5.10.

二 选择题(本题30分,每小题6分):

1.下列各式是代数式的是…………………………………………………………( )

(A)S =πr (B)5>3 (C)3x-2 (D)a<b+c

2.甲数比乙数的 大2,若乙数为y,则甲数可以表示为………………………( )

(A) y+2 (B) y-2 (C)7y+2 (D)7y-2

3.下列各式中,是方程的是………………………………………………………( )

(A)2+5=7 (B)x+8 (C)5x+y=7 (D)ax+b

4.一个三位数,个位数是a,十位数是b,百位数是c,这个三位数可以表示为( )

(A)abc (B)100a+10b+c (C)100abc (D)100c+10b+a

5.某厂一月份产值为a万元,二月份增产了15%,二月份的产值可以表示为( )

(A)(1+15%)× a 万元 (B)15%×a 万元

(C)(1+a)×15% 万元 (D)(1+15%)2 ×a 万元

答案:

1.C;2.A;3.C;4.D;5.A.

三 求下列代数式的值(本题10分,每小题5分):

1.2×x2+x-1 (其中x = );

解:2×x2+x-1

=2× + -1= + -1=0;

2. (其中 ).

解: = = .

四 (本题10分)

如图,等腰梯形中有一个最大的圆,梯形的上底为5cm,下底为7cm,圆的半径为3cm,求图中阴影部分的面积.

解:由已知,梯形的高为6cm,所以梯形的面积S为

= ×( a+b )×h

= ×( 5+7)×6

= 36(cm2).

圆的面积为

(cm2).

所以阴影部分的面积为

(cm2).

五 解下列方程(本题10分,每小题5分):

1.5x-8 = 2 ; 2. x+6 = 21.

解:5x = 10, 解: x = 15,

x = 2 ; x =15 =15 × =25.

六 列方程解应用问题(本题20分,每小题10分):

1.甲乙两人练习赛跑,如果甲让乙先跑10米,甲跑5秒就能追上乙;若甲每秒 跑9米,乙的速度应是多少?

解:设乙的速度是每秒x米,可列方程

(9-x)×5 = 10,

解得 x = 7 (米/秒)

2.买三支铅笔和一支圆珠笔共用去2元零5分,若圆珠笔的售价为1元6角,那么铅笔的售价是多少?

解:设铅笔的售价是x 元,可列方程

3x+1.6 = 2.05,

解得 x = 0.15(元)

《二次根式》基础测试

(一)判断题:(每小题1分,共5分).

1. =2.……( ) 2. 是二次根式.……………( )

3. = =13-12=1.( )4. , , 是同类二次根式.……( )

5. 的有理化因式为 .…………( )【答案】1.√;2.×;3.×;4.√;5.×.

(二)填空题:(每小题2分,共20分)

6.等式 =1-x成立的条件是_____________.【答案】x≤1.

7.当x____________时,二次根式 有意义.【提示】二次根式 有意义的条件是什么?a≥0.【答案】≥ .

8.比较大小: -2______2- .【提示】∵ ,∴ , .【答案】<.

9.计算: 等于__________.【提示】(3 )2-( )2=?【答案】2 .

10.计算: • =______________.【答案】 .

11.实数a、b在数轴上对应点的位置如图所示: a o b 则3a- =______________.

【提示】从数轴上看出a、b是什么数? a<0,b>0. 3a-4b是正数还是负数?

3a-4b<0. 【答案】6a-4b.

12.若 + =0,则x=___________,y=_________________.

【提示】 和 各表示什么?[x-8和y-2的算术平方根,算术平方根一定非负,]你能得到什么结论?[x-8=0,y-2=0.]【答案】8,2.

13.3-2 的有理化因式是____________.

【提示】(3-2 )(3+2 )=-11.【答案】3+2 .

14.当 <x<1时, - =______________.

【提示】x2-2x+1=( )2; -x+x2=( )2.[x-1; -x.]当 <x<1时,x-1与 -x各是正数还是负数?[x-1是负数, -x也是负数.]【答案】 -2x.

15.若最简二次根式 与 是同类二次根式,则a=_____________,

b=______________.

【提示】二次根式的根指数是多少?[3b-1=2.]a+2与4b-a有什么关系时,两式是同类二次根式?[a+2=4b-a.]

【答案】1,1.

(三)选择题:(每小题3分,共15分)

16.下列变形中,正确的是………( )(A)(2 )2=2×3=6 (B) =-

(C) = (D) = 【答案】D.

【点评】本题考查二次根式的性质.注意(B)不正确是因为 =|- |= ;(C)不正确是因为没有公式 = .

17.下列各式中,一定成立的是……( )(A) =a+b (B) =a2+1

(C) = • (D) = 【答案】B.

【点评】本题考查二次根式的性质成立的条件.(A)不正确是因为a+b不一定非负,(C)要成立必须a≥1,(D)要成立必须a≥0,b>0.

18.若式子 - +1有意义,则x的取值范围是………………………( )

(A)x≥ (B)x≤ (C)x= (D)以上都不对

【提示】要使式子有意义,必须

【答案】C.

19.当a<0,b<0时,把 化为最简二次根式,得…………………………………( )

(A) (B)- (C)- (D)

【提示】 = = .【答案】B.

【点评】本题考查性质 =|a|和分母有理化.注意(A)错误的原因是运用性质时没有考虑数.

20.当a<0时,化简|2a- |的结果是………( )(A)a (B)-a (C)3a (D)-3a

【提示】先化简 ,∵ a<0,∴ =-a.再化简|2a- |=|3a|.【答案】D.

(四)在实数范围内因式分解:(每小题4分,共8分)

21.2x2-4;【提示】先提取2,再用平方差公式.【答案】2(x+ )(x- ).

22.x4-2x2-3.【提示】先将x2看成整体,利用x2+px+q=(x+a)(x+b)其中a+b=p,ab=q分解.再用平方差公式分解x2-3.【答案】(x2+1)(x+ )(x- ).

(五)计算:(每小题5分,共20分)

23.( - )-( - );

【提示】先分别把每一个二次根式化成最简二次根式,再合并同类二次根式.【答案】 .

24.(5 + - )÷ ;

【解】原式=(20 +2 - )× =20 × +2 × - ×

=20+2- × =22-2 .

25. + -4 +2( -1)0;【解】原式=5 +2( -1)-4× +2×1

=5 +2 -2-2 +2=5 .

26.( - +2 + )÷ .

【提示】本题先将除法转化为乘法,用分配律乘开后,再化简.

【解】原式=( - +2 + )•

= • - • +2 • + • = - +2+ =a2+a- +2.

【点评】本题如果先将括号内各项化简,利用分配律乘开后还要化简,比较繁琐.

(六)求值:(每小题6分,共18分)

27.已知a= ,b= ,求 - 的值.

【提示】先将二次根式化简,再代入求值.

【解】原式= = = .

当a= ,b= 时,原式= =2.

【点评】如果直接把a、b的值代入计算,那么运算过程较复杂,且易出现计算错误.

28.已知x= ,求x2-x+ 的值.

【提示】本题应先将x化简后,再代入求值.

【解】∵ x= = = .

∴ x2-x+ =( +2)2-( +2)+ =5+4 +4- -2+ =7+4 .

【点评】若能注意到x-2= ,从而(x-2)2=5,我们也可将x2-x+ 化成关于

x-2的二次三项式,得如下解法:

∵ x2-x+ =(x-2)2+3(x-2)+2+ =( )2+3 +2+ =7+4 .

显然运算便捷,但对式的恒等变形要求甚高.

29.已知 + =0,求(x+y)x的值.

【提示】 , 都是算术平方根,因此,它们都是非负数,两个非负数的和等于0有什么结论?

【解】∵ ≥0, ≥0,

而 + =0,

∴ 解得 ∴ (x+y)x=(2+1)2=9.

(七)解答题:

30.(7分)已知直角三角形斜边长为(2 + )cm,一直角边长为( +2 )cm,求这个直角三角形的面积.

【提示】本题求直角三角形的面积只需求什么?[另一条直角边.]如何求?[利用勾股定理.]

【解】在直角三角形中,根据勾股定理:

另一条直角边长为: =3(cm).

∴ 直角三角形的面积为:

S= ×3×( )= (cm2)

答:这个直角三角形的面积为( )cm2.

31.(7分)已知|1-x|- =2x-5,求x的取值范围.

【提示】由已知得|1-x|-|x-4|=2x-5.此式在何时成立?[1-x≤0且x-4≤0.]

【解】由已知,等式的左边=|1-x|- =|1-x|-|x-4 右边=2x-5.

只有|1-x|=x-1,|x-4|=4-x时,左边=右边.这时 解得1≤x≤4.∴ x的取值范围是1≤x≤4.

二元一次方程》基础测试

(一)填空题(每空2分,共26分):

1.已知二元一次方程 =0,用含y 的代数式表示x,则x=_________;

当y=-2时,x=___ ____.【提示】把y 作为已知数,求解x.【答案】x= ;x= .

2.在(1) ,(2) ,(3) 这三组数值中,_____是方程组x-3y=9的解,______是方程2 x+y=4的解,______是方程组 的解.【提示】将三组数值分别代入方程、方程组进行检验.【答案】(1),(2);(1),(3);(1).【点评】方程组的解一定是方程组中各个方程共同的解.

3.已知 ,是方程 x+2 my+7=0的解,则m=_______.【提示】把 代入方程,求m.【答案】- .

4.若方程组 的解是 ,则a=__,b=_.【提示】将 代入 中,原方程组转化为关于a、b 的二元一次方程组,再解之.【答案】a=-5,b=3.

5.已知等式y=kx+b,当x=2时,y=-2;当x=- 时,y=3,则k=____,b=____.

【提示】把x、y 的对应值代入,得关于k、b 的二元一次方程组.

【答案】k=-2,b=2.【点评】通过建立方程组求解待定系数,是常用的方法.

6.若|3a+4b-c|+ (c-2 b)2=0,则a∶b∶c=_________.

【提示】由非负数的性质,得3 a+4 b-c=0,且c-2b=0.再用含b 的代数式表示a、c,从而求出a、b、c 的值.【答案】a=- b,c=2b;a∶b∶c=-2∶3∶6.

【点评】用一个未知数的代数式表示其余的未知数,是一种常用的有效方法.

7.当m=_______时,方程x+2y=2,2x+y=7,mx-y=0有公共解.

【提示】先解方程组 ,将求得的x、y 的值代入方程mx-y=0,或解方程组

【答案】 ,m=- .【点评】“公共解”是建立方程组的依据.

8.一个三位数,若百位上的数为x,十位上的数为y,个位上的数是百位与十位上的数的差的2倍,则这个三位数是_______________.

【提示】将各数位上的数乘相应的位数,再求和.

【答案】100 x+10 y+2(x-y).

(二)选择题(每小题2分,共16分):

9.已知下列方程组:(1) ,(2) ,(3) ,(4) ,

其中属于二元一次方程组的个数为………………………………………………()

(A)1(B)2(C)3(D)4

【提示】方程组(2)中含有三个未知数,方程组(3)中y 的次数都不是1,故(2)、(3)都不是二元一次方程组.【答案】B.

10.已知2 xb+5y3a与-4 x2ay2-4b是同类项,则ba的值为………………………()

(A)2(B)-2(C)1(D)-1

【提示】由同类项定义,得 ,解得 ,所以ba=(-1)2=1.【答案】C.

11.已知方程组 的解是 ,那么m、n 的值为……()

(A) (B) (C) (D)

【提示】将 代入方程组,得关于m、n 的二元一次方程组解之.【答案】D.

12.三元一次方程组 的解是…………………………………………()

(A) (B) (C) (D)

【提示】把三个方程的两边分别相加,得x+y+z=6或将选项逐一代入方程组验证,由

x+y=1知(B)、(D)均错误;再由y+z=5,排除(C),故(A)正确,前一种解法称之直接法;后一种解法称之逆推验证法.【答案】A.

【点评】由于数学选择题多为单选题——有且只有一个正确答案,因而它比一般题多一个已知条件:选择题中有且只有一个是正确的.故解选择题除了直接法以外,还有很多特殊的解法,随着学习的深入,我们将逐一向同学们介绍.

13.若方程组 的解x、y 的值相等,则a 的值为……………()

(A)-4(B)4(C)2(D)1

【提示】把x=y 代入4x+3y=14,解得x=y=2,再代入含a 的方程.【答案】C.

14.若关于x、y的方程组 的解满足方程2x+3y=6,那么k的值为()

(A)- (B) (C)- (D)-

【提示】把k 看作已知常数,求出x、y 的值,再把x、y 的值代入2 x+3 y=6,求出k.【答案】B.

15.若方程y=kx+b当x 与y 互为相反数时,b 比k 少1,且x= ,则k、b的值分别是…………()

(A)2,1(B) , (C)-2,1(D) ,- 【提示】由已知x= ,y=- ,可得 【答案】D.

16.某班学生分组搞活动,若每组7人,则余下4人;若每组8人,则有一组少3人.设全班有学生x 人,分成y 个小组,则可得方程组……………………………()

(A) (B) (C) (D)

【提示】由题意可得相等关系:(1)7组的学生数=总人数-4;(2)8组的人数=总人数+3.【答案】C.

(三)解下列方程组(每小题4分,共20分):

17. 【提示】用加减消元法先消去x.【答案】

18. 【提示】先整理各方程,化为整数系数的方程组,用加减法消去x.【答案】

19. 【提示】由第一个方程得x= y,代入整理后的第二个方程;或由第一个方程,设x=2 k,y=5 k,代入另一个方程求k 值.【答案】

20. (a、b为非零常数)

【提示】将两个方程左、右两边分别相加,得x+y=2a ①,把①分别与两个方程联立求解.

【答案】

【点评】迭加消元,是未知数系轮换方程组的常用解法.

21.

【提示】将第一个方程分别与另外两个方程联立,用加法消去y.

【答案】

【点评】分析组成方程组的每个方程中各未知项系数的构成特点,是选择恰当解题方法的关键所在,因而解题前要仔细观察,才能找出解题的捷径.

(四)解答题(每小题6分,共18分):

22.已知方程组 的解x、y 的和为12,求n 的值.

【提示】解已知方程组,用n 的代数式表示x、y,再代入 x+y=12.

【答案】n=14.

23.已知方程组 与 的解相同,求a2+2ab+b2 的值.

【提示】先解方程组 求得x、y,再代入方程组 求a、b.

【答案】 .

【点评】当n 个方程组的解相同,可将方程组中的任意两个方程联立成新的方程组.

24.已知代数式x2+ax+b当x=1和x=-3时的值分别为0和14,求当x=3时代数式的值.

【提示】由题意得关于a、b 的方程组.求出a、b 写出这个代数式,再求当x=3时它的值.

【答案】5.

【点评】本例在用待定系数法求出a、b 的值后,应写出这个代数式,因为它是求值的关键步骤.

(五)列方程组解应用问题(每1小题10分,共20分):

25.某校去年一年级男生比女生多80人,今年女生增加20%,男生减少25%,结果女生又比男生多30人,求去年一年级男生、女生各多少人.

【提示】设去年一年级男生、女生分别有x 人、y 人,可得方程组

【答案】x=280,y=200.

26.A、B两地相距20千米,甲、乙两人分别从A、B 两地同时相向而行,两小时后在途中相遇.然后甲返回A 地,乙继续前进,当甲回到A 地时,乙离A 地还有2千米,求甲、乙两人的速度.

【提示】由题意,相遇前甲走了2小时,及“当甲回到A地时,乙离A地还有2千米”,可得列方程组的另一个相等关系:甲、乙同向行2小时,相差2千米.设甲、乙两人的速度分别为x 千米/时,y 千米/时,则

【答案】甲的速度为5.5千米/时,乙的速度为4.5千米/时.

《分式》基础测试

一 填空题(每小题2分,共10分):

1.已知v=v0+at(a不为零),则t=;

2.关于x的方程mx=a (m 的解为 ;

3.方程 的根是;

4.如果-3 是分式方程的增根,则a= ;

5.一汽车在a小时内走x千米,用同样的速度,b分钟可以走千米.

答案:

1. ;2. ;3. ;4.3;5. .

二 选择题(每小题3分,共12分):

1.已知 =2,用含x的代数式表示y,得……………………………………()

(A)y=2x+8 (B)y=2x+10 (C)y=2x-8 (D)y=2x-10

2.下列关于x的方程,其中不是分式方程的是……………………………………()

(A)(B)

(C) (D)

3.一件工程甲单独做a小时完成,乙单独做b小时完成,甲、乙二人合作完成此项工作需要的小时数是………………………………………………………………………()

(A)a+b(B) (C) (D)

4.解关于x的方程(m2-1)x=m2-m-2(m2≠1) 的解应表示为…………()

(A)x=(B)x=

(C)x= (D)以上答案都不对

答案:

1. D;2.C;3.D;4.B.

三 解下列方程(每小题8分,共32分):

1. ;2. ;

解: , 解: ,

, ,

,,

, ,

, ,

. .

经检验, =1是原方程的根.经检验, =2是原方程的增根.

3. ;

解:去分母,得 ,

整理方程,得

经检验, =2是原方程的根.

4. .

解:整理方程,得

去分母,得

经检验,是原方程的根.

四 解下列关于x的方程(1、2每小题7分,3小题8分,共22分):

1. 2ax-(3a-4)=4x+3a+6;

解:整理,得

2ax-4x=3a+6+3a-4,

(2a-4)x=6a+2,

(a-2)x=3a+1,

当a≠2时,方程的根为

当a=2时,3a+1≠0,

所以原方程无解;

2.m2 (x-n)=n2 (x-m)(m2≠n2);

解:整理,得

m2 x-m2 n=n2 x-n2m,

移项,得

(m2-n2 )x=m2 n-n2m,

因为m2≠n2 ,所以m2-n2≠0,则方程的根为

x= ;

3. .

解:去分母,得

因为 所以方程的根是

x= .

快累死我了!!希望能拿下这200分!!呵呵~*~

如果数量不够,再告诉我,我再给你多打一些!!!

以上就是初中数学题大全的全部内容,初中数学基础知识测试题 学校 姓名 得分 一、填空题(本题共30小题,每小题2分,满分60分) 1、 和 统称为实数. 2、方程 -=1的解为 . 3、不等式组 的解集是 . 4、。

猜你喜欢