数学二次根式思维导图?然后直接用箭头往下分支出二级、三级等主题,也是常见的框架结构图,学生运用起来非常简单容易上手。有好多学生把框架结构变形为椭圆形箭头图、鱼骨头型箭头图。如图3是学生梳理二次根式的箭头式思维导图。那么,数学二次根式思维导图?一起来了解一下吧。
人教版七年级上册数学思维导图_人教版七年级数学上册知识点思维导图及总结
人教版七年级数学上册知识点思维导图及总结人教版七年级数学上册主要包含了有理数、整式的加减、一元一次方程、图形的认识初步四 个章节的内容.第一章 有理数 一、知识框架二.知识概念1.有理数: (1)凡能写成q (p, q为整数且 p ? 0) 形式的数,都是有理数.正整数、0、负整数统称整数;正 p分数、负分数统称分数;整数和分数统称有理数.注意:0 即不是正数,也不是负数;-a 不一 定是负数,+a 也不一定是正数;?不是有理数;(2)有理数的分迹凯类:? ?正整数 ?正有理数 ?正分数 ? ? ① 有理数 ?零 ? ?负整数 ?负有理数 ? ?负分数 ?? ?正整数 ?整数 ?零 ? ? ? ② 有理数 ? ?负整数 ? ?正分数 ?分数 ? ?负分数 ?2.数轴:数轴是规定了原点、正方向、单位长度的一条直线. 3.相反数: (1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0 的相反数还是 0; (2)相反数的和为 0 ? a+b=0 ? a、b 互为相反数. 4.绝对值: (1)正数的绝对值是其本身,0 的绝对值是 0,负数的绝对值是它的相反数;注意:绝对值的 意义是数轴上表示某数的点离开原点的距离;?a (a ? 0) (a ? 0) ? ?a (2) 绝对值可表示为: a ? ?0 (a ? 0) 或 a ? ? ; 绝对值的问题经常分类讨论; ? a ( a ? 0) ? ? ? a ( a ? 0 ) ?5.有理数比大小: (1)正数的绝对值越大,这个数越大; (2)正数永远比 0 大,负数永远比 0 小; (3)正数大于一切负数; (4)两个负数比大小,绝对值大的反而小; (5)数轴上的两 个数,右边的数总比左边的数大; (6)大数-小数 > 0,小数-大数 < 0. 6.互为倒数: 乘积为 1 的两个数互为倒数; 注意: 0 没有倒数; 若 a≠0, 那么 a 的倒数是1 ; a若 ab=1? a、b 互为倒数;若 ab=-1? a、b 互为负倒数. 7. 有理数加法法则: (1)同号两数相加,取相同的符号,并把绝对值相加; (2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值; (3)一个数与 0 相加,仍得这个数. 8.有理数加法的运算律: (1)加法的交换律:a+b=b+a ; (2)加法的结合律: (a+b)+c=a+(b+c). 9.有理数减法法则:减去一个数,等于加上这个数的相反数;即 a-b=a+(-b). 10 有理数乘法法则: (1)两数相乘,同号为正,异号为负,并把绝对值相乘; (2)任何数同零相乘都得零; (3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个 数决定. 11 有理数乘法的运算律: (1)乘法的交换律:ab=ba; (2)乘法的结合律: (ab)c=a(bc) ; (3)乘法的分配律:a(b+c)=ab+ac .即 无意义 . 12. 有理数除法法则: 除以一个数等于乘以这个数的倒数; 注意: 零不能做除数,13.有理数乘方的法则: (1)正数的任何次幂都是正数; (2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当 n 为正奇数时: (-a)n=-an 或(a -b)n=-(b-a)n , 当 n 为正偶数时: (-a)n =an 或 (a-b)n=(b-a)n . 14.乘方的定义: (1)求相同因式积的运算,叫做乘方;a 0(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂; 15. 科学记数法: 把一个大于 10 的数记成 a×10n 的形式, 其中 a 是整数数族搜位只有一位的数, 这种记数法叫科学记数法. 16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位. 17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似 数的有效数字. 18.混合运算法则:先乘方,后乘除,最后加减. 本章内容要求学生正确认识有理数的概念,在兆州历实际生活和学习数轴的基础上,理解正 负数、相反数、绝对值的意义所在。
目前,把思维导图与学科教学进行整合的只有华东首链师大刘濯源教授的思维可视化研究团队,因为他们是研究思维里最懂学科教学,也是研究学科教学里最懂思维的;
我去华师大参加过培训,后来局里将刘教授团队请来,我又参加了2次进阶培训。我还用学科思维导图上数学公开课,获得了初中数学优质课大赛一等奖。
下面给你分享下我将学科思维导图应用到初中数学教学中的心得:
参加完培训,我并没急着直接用到学科教学,而是先用了近1个月的时间教学生凯敏绘图,再帮学生不断改进图的品质,让他们先学会绘制优质的学科思维导图。但在这个过程中,你会发现他们思维能力得到了锻炼的同时,也增加了绘图的兴趣。等学生都掌握了,我就开始应用到教学中,主要从以下三个方面入手:
1、课前。让学生根据课本知识,运用学科思维导图构建知识结构,小组讨论并改进知识结构图。
2、课上。挑选学生盯芹枝把绘制好的,经过改进的图进行展示,其他学生针对这张图进行提问——难点、漏点、障碍点,最后由我进行总结和讲解(学生没有注意到或理解不正确的知识),再次对图进行改进。
3、考试。根据刘濯源教授提出的“即时考”建议,我就以考试形式(设置陷阱)对学生自学情况进行检测。根据检测情况,对知识理解障碍点再次进行厘清,并进一步完善学科思维导图。
只含有一个未知数(一元),并且未知数项的最高次数是2(二次)的整式方程叫做一元二次方程 。一元二次方程经过整理都可化成一般扮猛樱形式ax²+bx+c=0(a≠0)。其中ax²知告叫作二次项,a是二次项系数;bx叫作一次项,b是一次项系数;c叫作常数项 。
扩展资料:
主要形式
一般形式其中是二次项,是二次项系数;
是一次项;是一次项系数;是常数项。
使方程左右两边相等的未知数的值就是这个一元二次方程的解,一元二次方程的解也叫做一元二次方程的根 。
变形式(是实数,)(是实数,)(是实数)。
配方式两根式
参考资料:一元厅丛二次方程_
数学思维导图可以帮助我们提高复习效率。下面我精心整理了八年级数学的思维导图,供大家参考,希望你们喜欢!
八年级数学的思维导图:全等三角形
八年级数学的思维导图:二次根式
八年级数学的思维导图:实数
八年级数学的思维导图:相似图形
八年级数学的思维导图因式分解
1. 因式分把一个多项式化为几个整式的积的形式,叫做把这个多项式因式分解;注意:因式分解与乘法是相反的两个转化.
2.因式分解的方法:常用“提取公因式法”、“公式法”、“分组分解法”、“十字相乘法”.
3.公因式的确定:系数的最大公约数?相同因式的最低次幂.
注意公式:a+b=b+a; a-b=-(b-a); (a-b)2=(b-a)2; (a-b)3=-(b-a)3.
4.因式分解的公式:
(1)平方差公式: a2-b2=(a+ b)(a- b);
(2)完全平方公式: a2+2ab+b2=(a+b)2, a2-2ab+b2=(a-b)2.
5.因式分解的注意事项:
(1)选择因式分解方法的一般次序是:一 提取、二 公式、三 分组、四 十字;
(2)使用因式分解公式时要特别注意公式中的字母都具有整体性中缓轮;
(3)因式分解的最后结果要求分解到每一个因式都不能分解为止;
(4)因式分解的最后结果要求每一个因式的首项符号为正;
(5)因式分解的最后结果要求加以整理;
(6)因式分解的最后结果要求相同因式写成乘方的形式.
6.因式分解的解题技巧:(1)换位整理,加括号或去括号整理;(2)提负号;(3)全变号;(4)换元;(5)配方;(6)把相同的式子看作整体;(7)灵活分组;(8)提取分数系数;(9)展开部分括号或全部括号;(10)拆项或补项.
7.完全平方式:能化为(m+n)2的多项式叫完全平方式;对于二次三项式x2+px+q, 有“ x2+px+q是完全平方式 ? ”.
分式
1.分式:一般地,用A、B表示两个整式,A÷B就可以表示为 的形式,如果B中含有字母,式子 叫做分式.
2.有理式:整式与分式统称有理式;即 .
3.对于分式的两个重要判断:(1)若分式的分母为零,则分式无意义,反之有意义;(2)若分式的分子为零,而分母不为零,则分式的值为零;注意:若分式的分子为零,而分母也为零,则分式无意义.
4.分式的基本性质与应用:
(1)若分式的分子与分母都乘以(或除以)同一个不为零的整式,分式的值不变;
(2)注意:在分式中,分子、分母、分式本身的符号,改变其中任何两个,分式的值不变;
即
(3)繁分式化简时,采用分子分母同乘小分母的最小公倍数的方法,比较简单.
5.分式的约分:把一个分式的分子与分母的公因式约去,叫做分式的约分;注意:分式约分前经常需要先因式分解.
6.最简分式:一个分式的分子与分母没有公因式,这个分式叫做最简分式;注意:分式计算的最后结果要求化为最简分式.
7.分式的乘除法法则: .
8.分式的乘卖信方: .
9.负整指数计算法则:
(1)公式哪销: a0=1(a≠0), a-n= (a≠0);
(2)正整指数的运算法则都可用于负整指数计算;
(3)公式: , ;
(4)公式: (-1)-2=1, (-1)-3=-1.
一、树形思维导图
因为在最初指导学生认识思维导图的时候,我给学生展示的就是树形图。所以学生运用树形图对数学知识进行梳理比较熟练。学生在生活中早已认识了树的形状,对树干、树枝、树叶及分枝的感知非常清晰,也就很容易的联想到树干、树枝与主题、分主题的逻辑关系。所以学生运用树形图的时候比较多,也绘制的比较好。如图1是苏科版数学八年级下册第10章分式的树形思维导图.
图1 分式树形思维导图
树形图的优点是主干分支非常明确,但画起来比较麻烦。为了更简单的运用思维导图,后来我们发动学生研究更简单的思维导图形式,大家确认腊耐就把树干简化为一个圆、椭圆或正方形等简单镇贺易画的图形,如图2:学生把树干简化成一个圆环,涂上不同颜色,画上一个指针,这是苏科版数学八年级下册第8章第二节数学实验室中的转盘模型变形图,学生的这一构想即贴近课本又有一定的创造御局派性。
图2:概率树形思维导图
二、箭头或框架式思维导图
箭头或框架样式的思维导图,老师在日常备课或给学生做知识梳理的时候会经常使用,非常简洁明了,而且容易绘制。只是以前我们没有把它作为一种学习方法并上升到理论高度去重视。这种结构图实际上就是一种很简单好用的思维导图,特别适合在课堂中应用。
以上就是数学二次根式思维导图的全部内容,只含有一个未知数(一元),并且未知数项的最高次数是2(二次)的整式方程叫做一元二次方程 。一元二次方程经过整理都可化成一般形式ax²+bx+c=0(a≠0)。其中ax²叫作二次项。