当前位置: 首页 > 所有学科 > 化学

土壤地球化学,土壤地球化学招聘

  • 化学
  • 2023-04-26
目录
  • 地球化学属于化学类吗
  • 试述土壤中cd的地球化学过程
  • 土地质量地球化学
  • 绿色地质勘查工作规范
  • 勘察地球化学

  • 地球化学属于化学类吗

    一、基本概念及统计方法

    1.基本概念

    土壤地球化学基准值和背景值是土壤地球化学研究的最基础的特征参数,它们分别代表了不同环境土壤中的元素含量水平和变化规律。

    土壤地球化学基准值反映的是原始自然状态条件下(第Ⅰ环境)各类成土芹配液母质的元素地球化学丰度,其控制因素主要是地质背景、沉积物来源和类型,以及地貌气候条件,以深层土壤地球化学调查元素含量表征。它是研究表生元素地球化学行为(次生富集或贫化)的重要参比值,也是圈定矿致类元素异常、成土母质环境质量、农产品品质与安全性及防治对策等研究的基本参考值。

    土壤地球化学背景值反映的是成土母质在表生环境条件下,经过人类活动与自然改造所形成的表层土壤(第Ⅱ环境)元素地球化学平均含量,以表层土壤地球化学调查元素含量表征。它与土壤地球化学基准值有着密切继承关系,总体受土壤地球化学基准值的控制,但由于经长期风化、淋溶作用和人类生产生活等活动的改造,表层土壤地球化学特征已发生一定的演变,导致两者之间存在一定的差异。它是土壤嫌物环境质量评价、土地管护和合理利用、土壤改良和平衡施肥、农业种植规划、土壤生态环境保护决策的基础依据。

    2.统计方法

    依据《多目标区域地球化学调查规范(1:25万)》(DD2005—01)“同一沉积环境、同一物质来源、满足正态分布”的土壤地球化学基准值确定原则。本次研究土壤地球化学基准值和背景值的求取首先依据《数据的统计处理和解释正态性检验》(GB/T4882—2001),对数据频率分布形态进行正态检验。以基准值为例,当统计数据服从正态分布时,用算术平均值(X)代表基准值,算术平均值加减2倍算术标准偏差(X±2S)代表基准值变化范围;服从对数正态分布的数据,用几何平均值(Xg)代表基准值,几何平均值乘几何标准偏差的平方(Xg·S±2)代表基准值变化范围;不服从正态分布的数据,按照算术平均值加减3倍算术标准偏差(X±3S)或几何平均值乘几何标准偏差的立方(Xg·S±3)进行剔除,经反复剔除后服从算术正态分布或对数正态分布时,用算术平均值或几何平均值代表土壤基准值,算术平均值加减2倍算术标准偏差(X±2S)或几何平均值乘除几何标准偏差的平方(Xg·S±2)代表基准值变化范围。经反复剔除后仍不满足正态分布或对数正态分布,当呈偏态分布时,以众值或平均值代表基准值;当呈双峰或多峰分布时,以中位值或平均值代表基准值。

    在进行pH参数统计时,先将土壤pH换算成[H]平均浓度进行统计计算,然后再换算为pH,其公式为

    鲁东地区农业生态地球化学研究

    利用K值(统计值与参比区(全国、全省等)的比值)比较元素(指标)的相对富集或贫乏特征。规定比值<0.80时为明显偏低,比值在0.8~0.90时为偏低,比值0.90~1.10时为接近(或相当),比值在1.10~1.20时为偏高,比值>1.20时为明显偏高。变异系数是反映元素分布均匀程度的一个重要参数,采用如下经验值判别:变异系数<0.4,元素分布均匀;0.4≤变异系数<1.0,元素分布较不均匀;1.0≤变异系数<1.5,元素分布不均匀;变异系数≥1.5,元素分布极不均匀。

    二、土壤地球化学基卖肢准值

    研究区土壤地球化学基准值特征参数统计见表3-1。研究区土壤地球化学基准值与山东省土壤平均值(C层)和1990年国家环境保护局、中国环境监测总站测定的中国土壤元素平均值(C层,仅13项指标)对比有如下特征:

    1)研究区土壤元素基准值与中国土壤元素平均值(C层)相比,比值在0.293~0.913之间,其中偏低的元素有(0.8<K值≤0.9):F,Ni,Co,V,明显偏低的元素有(K值≤0.8):Hg,Se,As,Zn,Cu,Cd,这说明区域原始土壤中Hg,As,Cd,Ni等元素环境质量较好,但同时也说明Cu,Zn,F,Co等微量营养元素总量不足,特别是Se仅为全国的39%,Zn含量仅为全国土壤值的71%。Mn,Cr,Pb 三元素与中国土壤平均值(C层)较为接近(K值>0.9)。

    2)与山东省土壤平均值(C层)对比,深层土壤中相对偏低和明显偏低的元素有(K值≤0.9,按从小到大的顺序排列):As,Cu,Zn,F,Co,Cd,Cr,Ni,Hg,Pb,其中As,Cu,Zn明显偏低,分别是山东省土壤平均值(C层)的67%,69%,89%;Se明显高于山东省土壤平均值(C 层),为山东省土壤平均值的1.23倍,而V,Mn与山东省土壤平均值(C层)基本接近。

    3)深层土壤中大部分元素含量分布均匀,变异系数(CV)大多在0.07~0.40 之间,特别是SiO2,pH,Al2O3,Ge,Ga,K2O,Rb,Y,Tl,Be等元素变异系数在0.09~0.25之间;而分布较不均匀的元素有:Mo,I,Br,CaO,C,Cd,Ni,Ag,P,Bi,Pb,Mn,W,OrgC,Th,As,Cr,Cu,Se,MgO,Sr,Zn,Co,B,Ba,其变异系数在0.43~0.89之间;分布不均匀的元素有 S,Sb,其变异系数分别为1.4,1.09;分布极不均匀的元素有 Cl,Au,Hg,变异系数分别为:3.89,2.63,2.35。由此可见,在深层土壤中,难迁移和强分散元素的空间变异性最弱,强迁移的碱(土)金属元素变异性较强烈,与金成矿作用有关的元素(Au,Hg,S,Sb)空间变异性最强烈。

    4)深层土壤中pH最高为9.66,最低为4.61,平均值为7.54,呈中性,尚未受到土壤酸化的影响。

    表3-1 深层土壤地球化学含量特征参数表

    续表

    注:深层土壤含量统计原始数据量为3522件。Au的含量单位为10-9,Al2O3,C,CaO,K2O,MgO,N,Na2O,OrgC,SiO2,TFe2O3含量单位为%,pH为无量纲,其指标含量单位为10-6

    三、土壤地球化学背景值

    土壤元素地球化学背景值参数统计见表3-2。土壤元素地球化学背景值与山东省土壤元素平均值(A层,48项指标)和1990年国家环境保护局、中国环境监测总站测定的中国土壤元素平均值(A层,46项指标)对比有如下特征:

    1)鲁东地区土壤背景值与中国土壤平均值(A层)相比,绝大部分元素比值在0.303~0.871之间,偏低的元素有(0.8<K值≤0.9):V,La,Rb,Cr,F,TFe2O3,明显偏低的元素有(K值≤0.8):Mo,Hg,OrgC,Sb,W,Ag,I,As,Se,Bi,CaO,Br,U,B,Th,Li,Zn,Sc,Ge,MgO,Cu,Ni,Co,其中Mo为中国土壤平均值(A层)的30%,OrgC为中国土壤平均值(A层)的41%,Se为中国土壤平均值(A层)的53%,说明调查区中植物营养有益元素的总量是相对缺乏的。偏高的元素有(1.1<K值≤1.2):K2O,Zr,明显偏高的元素有(K值>1.2):Na2O,Ba,Sr。

    土壤化学成分与基岩、母质类型相关,母岩风化形成的土壤其地球化学元素特征总体与岩石地球化学特征一致。调查区广泛发育中酸性、酸性侵入岩,这类岩石本身缺乏MgO,CaO,Fe2O3,Co,Cr,V,Ti,Ni,Mn等,而富含Al2O3,K2O,Na2O和Ba,Sr,Zr等元素,加上矿化作用的影响,致使这些元素的背景值较高。此外,土壤以粗骨土、石质土为主,显酸性,淋溶作用强烈,致使碱金属、碱土金属元素大量流失。

    2)与山东省土壤平均值(A层)对比,表层土壤中偏低的元素为(K值≤0.9,按从小到大的顺序排列):Mo,W,CaO,Ag,Sb,Br,As,I,Bi,B,Co,MgO,Cu,Ge,Cr,Be,U,F,Ni,V,Li,Th,pH,Sc,Rb;表层土壤中偏高的元素有(K值≥1.1,按从大到小的顺序排列):P,TFe2O3,Ba,OrgC,N,Hg,Sr,Ga,Zr,Se,Cd,K2O,Na2O,其中 P,TFe2O3,OrgC,N,Sr,Se,K2O,Na2O等元素为植物营养有益元素,这些元素组合特征,反映了鲁东地区是多种名优特农产品重要产地这一特色;重金属元素Hg,Cd含量分别为山东省土壤平均值(A层)的1.31,1.18倍,其污染程度略高于山东省其他地区。

    3)表层土壤中分布最不均匀的元素是Hg,变异系数为5.04,分布极不均匀的元素还有Cl,Au,S,变异系数分别是4.05,3.42,3.07;分布不均匀的元素有Cd和I,变异系数分别为 1.27,1.11;分布较不均匀的元素有:Br,Ag,Mo,Pb,Sb,Cu,Bi,Se,Ni,CaO,As,W,Cr,MgO,Th,Sr,C,B,Ba,La,Sn,其变异系数在0.401~0.921之间,其他元素变异系数<0.4,分布均匀。表层土壤大部分元素的变异特征与深层土壤具有相似性,说明表层土壤在风化过程中对深层土壤有一定的继承性。

    4)深层土壤中pH平均为7.54,而表层土壤中pH平均为6.51,最低为3.8,土壤酸化较严重。有机碳0.73%,全碳0.74%,说明表层土壤有机质较缺乏。

    表3-2 表层土壤地球化学含量特征参数表

    续表

    续表

    注:表层土壤含量统计原始数据量为13 674件。Au 含量单位为10-9,Al2O3,C,CaO,K2O,MgO,N,Na2O,OrgC,SiO2,TFe2O3含量单位为%,pH为无量纲,其余指标含量单位为10-6

    四、土壤元素有效量及控制因素

    (一)基本概念和统计方法

    1.土壤元素有效量

    土壤元素有效量是指特定实验操作条件下(针对一定粒级的样品组分,采用规定的浸提剂、液土比、实验温度、振荡时间等)浸取得到的土壤中呈相对活动状态存在于土壤中,被认定为能被植物直接吸收利用,或易溶于水体迁移的那部分元素组分。虽然,采用上述方法提取得到的元素组分是否真正是土壤中“生物有效态”组分还需要通过理论和实验的检验,但总体来说,与土壤元素总量相比,有效态组分具有更直接的生态环境意义,能够更有效地反映植物营养元素的供给能力。元素有效量与全量的比值为有效度,它是衡量元素在土壤环境中的活性程度或植物可吸收水平的指标,有效度是全量、有效量及有机质和pH等理化参数的函数。本次调查按1点/36km2的采样密度对调查区土壤中N,P,S,K,Mo,Zn,Fe,Cu,B,Mn,Se 等 11种元素有效态含量及对应全量、有机质、pH、阳离子交换量(CEC)进行了调查。

    2.土壤元素有效量背景值统计方法

    在反复剔除平均值加减3倍标准离差的离散值后,以算术平均值作为有效量背景值。当统计数据较少(不足30个)时,用中位值作为土壤元素背景值。计算土壤元素有效度平均值采用先计算单点有效度再逐步剔除异常值的方法进行统计,以更加客观地反映土壤元素的有效度状况。

    (二)土壤元素有效量与有效度

    调查区土壤元素有效态背景值参数统计结果见表3-3。N,P,K,Mn,Zn,Fe等元素有效态含量既高于山东省土壤平均值,又高于土壤临界值,说明调查区土壤质量较好,供肥能力较强,从含量变化范围来看,调查区绝大部分地区Zn,P,Mn 养分富足,而 N,K,Fe,Cu存在较大面积缺乏。Mo,B两元素低于山东省土壤均值,也低于土壤临界值,说明Mo,B元素在土壤中营养水平较差,易出现缺乏现象,同时说明山东省土壤Mo,B含量普遍偏低,应引起重视。区内S有效量平均值为35.9×10-6,含量在7.0×10-6~91.2×10-6之间,变化幅度较大,局部土壤缺乏。

    统计表明,调查区土壤元素全量排序依次为(均值,10-6):Fe 3.90(%),K 2.60(%),N 883,P 773,Mn 706,S 31.6,Zn 58.6,B 31.6,Cu 20.2,Mo 0.75,Se 0.21,元素有效量依次为(均值,10-6):K 148,N 118,Mn 71.6,Fe 69.9,P 49.62,S 35.9,Zn 4.24,Cu 1.80,B 0.386,Mo 0.084,Se 18.50(10-9)。对比两者间的排序,可以发现土壤元素有效量与全量总体排序十分相似,如K,Fe,N,Mn无论是全量还是有效量均较高,含量级别往往高于其他元素一个或几个含量级,又如Zn,B,Cu,Mo,Se 5种元素,无论是全量还有效量均处在第二级次,反映了土壤元素有效量总体受其元素丰度所控制。

    由表3-3可见,调查区土壤元素有效度(%计)(由大到小)顺序为:S 17.78,N 13.28,Mo 11.71,Cu 10.32,Mn 10.16,Se 8.77,Zn 7.87,P 6.88,B 1.32,K 0.59,Fe 0.18。可见不同元素的有效度相差悬殊,显然,元素表生地球化学性质是决定其有效度的重要内因。

    表3-3 土壤元素有效量背景值参数统计表

    注:样品统计原始数据量为1556件,有效量Se含量单位为10-9,其余为10-6,全量K,Fe含量单位为%,其余指标含量单位为10-6

    (三)元素有效量及有效度影响因素

    1.土壤元素全量对有效量的影响

    统计分析表明,各元素全量与有效量的相关系数分别为:N 0.54,P 0.50,K 0.05,Cu 0.93,Mn 0.17,Mo 0.74,Zn 0.55,Fe 0.04,B 0.35,Se 0.19,S 0.62(置信度α=0.05时,显著相关临界值约为0.195)。即N,P,Cu,Mo,Zn,S等元素有效量受全量的影响较明显,如图3-1所示Cu,Mo两元素全量与有效量呈显著正相关关系,其他元素如K,Fe,Mn,B,Se等有效量受全量影响不明显。因此,土壤元素全量资料对于农业施肥(N,P,Cu,Mo,Zn),环境质量及生态效应评价(Mn,Cu,Zn)等具有参考价值。

    图3-1 Cu,Mo有效量与全量相关性散点图(显著正相关)

    2.土壤有机质对有效量和有效度的影响

    (1)对有效量的影响

    统计分析表明,土壤有机质含量与有效量间的相关系数分别为:N 0.27,P 0.27,K 0.23,Cu 0.43,Mn-0.05,Mo 0.18,Zn 0.44,Fe-0.32,B 0.50,Se 0.13,S 0.22。表明了多数元素有效量受土壤有机质含量的影响。其中,N,P,B,Zn,Cu等元素有效量与有机质含量呈显著的线性正相关,Zn,B元素有效量与有机质相关性散点图(图3-2),表明增施有机肥,可以提高这些元素的有效量,从而提高其肥力;K,S,Mo,Se的有效量也随着有机质含量的增加而增加,但相关性较差;而Mn有效量与有机质关系不明显;Fe有效量与有机质呈显著负相关。

    图3-2 B,Zn元素有效量与有机质相关性散点图(显著正相关)

    (2)有机质对有效度的影响

    统计分析表明,土壤元素有效度与有机质含量间的相关系数分别为:N-0.20,P 0.02,K 0.20,Cu-0.18,Mn-0.07,Mo-0.12,Zn 0.30,Fe-0.32,B 0.41,Se-0.19,S-0.33(置信度α=0.05时,显著相关临界值约为0.195),表明多数元素有效度明显受土壤有机质含量的影响。其中K,Zn,B的有效度与有机质呈正相关性,B,S元素有效度与有机质相关性散点图(图3-3),表明有机质积聚,可使B,K,Zn等元素有效度提高,从而增加土壤肥力;同时也可使S,N,Fe,Se等元素有效度降低,其余元素有效度与有机质相关性不明显。

    图3-3 B,S元素有效度与有机质相关性散点图(显著相关)

    3.土壤pH对有效度的影响

    统计分析认为,元素有效度与pH间的相关系数分别为:N 0.03,P-0.10,K 0.28,Cu-0.18,Mn-0.69,Mo 0.02,Zn 0.31,Fe-0.42,B 0.51,Se-0.15,S 0.14(置信度α=0.05时,显著相关临界值约为0.195)。反映多数元素有效度明显受土壤pH的影响,其中Fe,Mn 有效度与 pH 值显著负相关(图3-4),而 B,K,Zn 则与 pH 呈显著正相关性(图3-5),其余元素有效度与pH相关性不明显。即pH是影响土壤中Fe,Mn,B,K,Zn等元素有效性的重要因素。

    图3-4 Fe,Mn元素有效度与pH相关性散点图(显著负相关)

    图3-5 Zn,B元素有效度与pH相关性散点图(显著正相关)

    以上研究表明,研究区土壤元素全量及有机质、酸碱度等理化性质对土壤元素有效量及有效度有较大影响。土壤中N,P,Cu,Mo,Zn,S等元素全量是其有效量的重要影响控制因素;有机质含量较高有利于N,P,B,Zn,Cu等元素的活化,增加其有效量;土壤酸碱度对Fe,Mn,B,K,Zn有效度有显著影响,酸性土壤有利于提高Fe,Mn元素的有效量,而碱性环境能使B,K,Zn元素有效量增高。土壤元素有效量与全量的关系及其影响因素的研究成果,对于农业施肥,环境质量评价等方面具有一定的指导意义。

    五、表层与深层土壤元素地球化学特征对比

    (一)表层土壤与深层土壤元素富集趋势分析

    背景值与基准值的比值(富集系数)代表各指标在表层土壤中的富集程度。表层、深层土壤是在同一成土母质基础上发育而成,土壤地球化学含量特征理应一致,但表层土壤在成土过程中,受自然风化淋漓作用和人为扰动,如后期“工业三废”、增施肥料、污灌和农药等因素影响,使其含量特征产生明显差异。

    从土壤地球化学背景值与基准值对比(表3-4)可以看出,背景值与基准值在土壤中的含量分布是极不均匀的,两者之间既有联系又有区别,既表现出一定的继承性,又有不同的地球化学演化趋势。本研究用富集系数K(K=背景值/基准值)探讨元素在土壤剖面中的富集与贫化特征,规定K>2为强富集,K=1.3~2.0为富集,K=1.1~1.3为略富集,K=0.9~1.1为基本一致,K<0.9为贫化。分段统计比值(表3-5)可以得出结论:

    表3-4 土壤背景值与基准值及其比值表

    续表

    注:Au含量单位为10-9,Al2O3,C,CaO,K2O,MgO,N,Na2O,OrgC,SiO2,Fe2O3含量单位为%,pH为无量纲,其余指标含量单位为10-6,K=背景值/基准值。

    表3-5 土壤背景值与基准值比值分类表

    1)Co,MgO,Ni,TFe2O3,Sc,Li等指标的富集系数<0.9,呈贫化状态,可能是由于表层土壤在风化成壤作用与人类活动作用中有少量被迁移带出,农作物吸收或淋溶至土壤深层所致;表层土壤与深层土壤pH比值为0.864,富集系数<0.9,反映了在表生作用和人类活动如燃煤、汽车尾气、污水灌溉等影响下,导致表层土壤pH降低(酸化)。

    2)Sb,V,Ce,W,Au,Be,Al2O3,Ga,Th,As,Cr,La,Y,Mn,Ti,F,Tl,Ge,Rb,U,Nb,I,Ba,K2O,Cu,SiO2,B,Sr,Zn,Mo,Bi,Sn,Na2O,CaO,Pb,Zr等大部分元素或指标的富集系数在0.9~1.1 之间,表层土壤与深层土壤的背景含量基本一致,基本上继承了深层土壤的地球化学含量分布特征,表明风化成土等表生地球化学作用及人类活动所造成的深、表层土壤地球化学成分的变化较小,主要受成土母质控制。

    3)Ag,Br,Cl 3种元素富集系数在1.1~1.3之间,Ag元素富集受土壤成土母质(母岩)和后期人为活动的双重影响;卤族元素Cl和Br富集则可能与表层土壤对海洋水汽的持续接收有关。

    4)Cd,Se,S,Hg,P元素的富集系数在1.3~2.0之间,表明这些元素在表层土壤中富集。其原因一方面与元素自身地球化学性质和成土母质、地质背景有关,另一方面可能与下列因素有关:

    A.长期的农业生产活动如耕作、施肥、农药带来Cd,S,Hg,P 在表层土壤中的局部富集。

    B.人类工业生产和居民生活带来的污染。如工业与民用燃煤的长期使用,机动车尾气、工厂“三废”排放使Cd,Se,S,Hg在表层土壤中富集。

    C.矿产资源的开发利用使Cd,Hg等在表层土壤中不断积累,造成了元素的富集。这一事实从表层土壤因子分析结果中可明确地反映出来,因子分析表明,Cd,Hg与Au,Ag及Pb,Zn,Cu,Bi等金矿指示元素进入同一主因子,可见,表层土壤Cd,Hg等重金属元素富集与金矿伴生元素或矿山开采有关。

    5)C,N,OrgC富集系数>2,表明这些指标在表层土壤中已趋于明显富集,农业生产中有机肥、氮肥的使用是使研究区表层土壤中 OrgC 和 N元素含量显著提高的主要原因;OrgC和C主要富集于山区,除与成壤作用及人类耕作有关外,还与动植物代谢、死亡积淀有关。

    (二)表层土壤与深层土壤元素变异系数比较

    表层土壤在成壤过程中元素受到活化迁移重新分配等自然作用及人为叠加扰动的影响,使得元素的含量变化幅度较大、空间分布差异明显。因此,表层土壤某些元素的标准偏差与其平均值的比值(变异系数)与深层土壤相比有较大差别。

    由表3-6可见,大多数元素表层土壤与深层土壤变异系数的比值在0.80~1.20 之间,这说明多数元素在表层土壤和深层土壤中的分布特征相似,表层、深层土壤变异系数比值>1.2 的元素多与金矿成矿作用和人类活动关系密切,如 S,Hg,Cd,Ag,pH,Cu,Pb,Au,Sn,Se等,特别是Hg元素,在表层土壤中的变异系数高达5.041,在深层土壤中为2.353,说明表层土壤中Hg受到较强烈的人为活动影响;S和Cd元素情况与此类似,其变异系数在表层土壤中高达 3.070,1.271,而在深层土壤中仅为1.399,0.7。Au,Ag在地质体单元中分布极不均匀,且在表层土壤中极易富集,导致在表层土壤中也有较高的变异系数。

    表3-6 表层土壤与深层土壤元素变异系数对比表

    续表

    CaO与MgO在深层、表层土壤中变异系数都>0.50,特别是CaO在深层土壤中变异系数达0.787,说明这类元素在不同岩体中含量差异悬殊。如在碳酸盐岩中,CaO 含量可达50%以上,而在硅酸盐岩石中含量<5%。

    试述土壤中cd的地球化学过程

    农学中有一重要的基础科学是局差圆诞生于19世纪40年代的《农业化学》,它是研究植物营养、土壤养分、肥料性质及其合理施用庆模的理论和技术的科学。其中植物营养由农业化学奠基人李比希(Jusfus Von Liebiq,1803~1873)创立了“植物矿质营养说”,继而又创立了“养分归还说”和“李比希最小养分律”,以及由法国生物学家G·伯特兰德创立的“伯特兰德最适营养浓度定律”。这些农业化学的经典理论是桐塌用以闸明矿质营养元素在成土母岩(母质)—土壤—农作物的转换过程中,对作物生长发育和形成产量、质量的意义。矿质元素的转换过程实质上是元素迁移集散的表生地球化学过程,这一点笔者在“农业化学和地球化学与农业地质的几个问题”一文中说得很清楚,也应是地球化学研究农业问题的理论基础。地球化学只有以农业化学为理论基础研究农业,应用于农业才有实际意义和实用价值。本书的农业地质环境评价的地球化学即是如此,通过从母岩(母质)到土壤的自然的和人为的(工农业生产)地球化学研究对各土壤类型按自然土壤、农业土壤的国家土壤质量标准进行评价,指出现阶段的状况是其发展趋势,它对现阶段合理利用土壤及土壤质量发展趋势有预警意义。毫无疑问,对土壤地球化学的研究是农业地质环境评价体系中一项重要的也是主要的工作。

    土地质量地球化学

    1.应用条件

    土壤地球化学找矿早已成为地质矿产普查、矿区详查和矿点检查及区域化探异常检查工作中的重要手段。尤其是在残 - 坡积层发育的覆盖 - 半覆盖区,它是必不可少的、基本的地球化学找矿方法。

    土壤地球化学找矿对各种金属矿产和不同的矿床类型都有很大的适应性,过去主要用于有色金属、稀有金属和放射性矿产的普查。目前,已扩大应用于贵金属、黑色金属和非金属的普查。通过次生晕的研究,不仅可以确定矿床的具体位置,追索并圈定隐伏矿体的分布范围,指导探矿工程的布置,并可预测隐伏矿体的矿石类型和矿化的大致规模。

    此外,土壤地球化学找矿资料还是成矿区带成矿规律研究的重要依据。在覆盖 - 半覆盖地区,根据土壤中的特征性元素组合及其含量变化,可以推断松散层覆盖下的岩石类型及其空间分布范围,追索各种地质体的界残,确定断裂构造的具体位置。

    土壤地球化学找矿的效果与松散覆盖层的成因类型和厚度有很大的关系。在有残 - 坡积层发育的地区最适宜进行土壤地球化学找矿。在运积层覆盖地区,土壤地球化学找矿的效果,取决于上置晕的发育和出露情况。在运积层较厚的情况下,为了追索和圈定被掩埋的矿带,研究上置次生晕还需要大量的钻探采样。

    残留晕和上置晕具有明显的不同成因特征,因而在残 - 坡积层覆盖区和在运积层覆盖区开展地球化学测量,其工作方法应有差别。

    2.野外工作方法

    土壤地球化学找矿的根本任务在于寻找松散覆盖层以下的矿床、矿体。而对于残 - 坡积层覆盖区与运积层覆盖区土壤地球化学测量的具体工作方法有所区别。这里着重介绍残 - 坡积层覆盖区土壤地球化学测量工作方法。

    (1)采样工作的布局

    土壤地球化学测量的采样布局有规则测网和不规则测网两种形式。

    1∶ 50000 和 1∶ 25000 比例尺的地球激碧宴化学普查工作任务是: 寻找隐伏的矿床和矿带,圈定进一步开展找矿工作的远景地段。这种情况下的地球化学测量常常采用不规则的测网。采样工作与地质填图工作结合,采样线、采样点与地质观测路线、观测点重合,其优点是与地质调查密切结合,有利于成果的解释,缺点是不便于数据的计算处理和自动成图。

    1∶ 10000 ~ 1∶ 2000 比例尺的地球化学详查多用于矿区或有远景的异常地段。其任务是圈定矿体、矿带的范围; 预测矿化的类型和规模; 确定矿体的分布和矿床的远景,为探矿工程提供依据。在地球化学详查中,一般均采用规则的测网,用较稀的线距和较密的点距布网,测线垂直于控矿构造的方向或已知矿体的走向方向。在残 - 坡积层覆盖区,各种比例尺土壤地球化学测量的测线、测点间距参见表4-9。

    表4-9 残 - 坡积层覆盖区土壤地球化学测量的网度

    (2)样品采集与加工

    1)样品采集: 采集土壤样品应注明银意其代表性与有效性。所谓代表性即采集的土壤样品能否代表该地段土壤中金属分布的真实情况,反映矿床次生晕中矿石组分的含量变化。为此,采样的间距不宜过大,样品的原始质量不宜过小。所谓有效性指的是能否有效发现地球化学异常。为此,样品应采自富集层位和富集粒度。只有这样才能保证土壤地球化学测量的找矿效果。同时为了提高工作效率,还要考虑经济成本,即在保证地质效果的前提下,将样品总数量降低到最低限。它直接关系到样品加工与分析工作量,在样品采集过程中必须给予认真考虑,恰当处理。一般土壤样品的原始质量要求在 50 ~100g 范围内。

    在土壤剖面上,深度(层位)不同,各种化学元素的含量也可以不一样。为了有效地发现异常,应在该元素的富集层位采样。不同气候环境形成不同类型的土壤,元素的富集深度也不同。即使在同一类型的土壤中,由于表生地球化学性质不同元素也不都聚集在同一层位(深度)内。一般淀积层(B 层)易富集多种亲铁的重金属元素和吸附有大量金属离子,而一些亲生物的稀有元素和组分及耐风化矿物的元素在 A 层更富集。因此采样深度(或层位)也需要根据所寻找的主要矿种的指示元素地球化学性质,结合当地土壤形成过程中该元素的迁移、富集特慧碧点来考虑,并通过试验确定合理的采样层位和采样粒度。

    不论样品采自何种层位(或深度),重要的是要逐个采样点进行记录,以便于整理分析数据,及时了解样品所处土壤剖面中的位置(或层位),合理进行含量对比,解释含量变化的原因,从中找出由矿石组分分散原因引起的含量增高地段。

    此外,采样点记录中还应包括下列内容: 测线号、测点号、土壤类型、物质组成、颜色、粒度、湿度、采样深度; 附近的岩石、构造、蚀变、矿化以及植被、含水层等情况。

    2)样品加工: 样品加工的目的是使样品的物质组成和粉碎程度符合分析测试要求。通常原始样品颗粒大小不等,潮湿并夹杂许多有机物质,需要干燥、分选与研磨才可提交分析。

    干燥样品可采用风干、日晒或烘干等方法; 粉碎样品可使用盘式细磨机或玛瑙钵研磨,粉碎粒度根据分析方法而定,然后过筛缩分为 40g 装入送样袋中。

    化探样品加工过程中要避免各种污染、混样、错号; 否则将给成果带来严重影响。

    应该指出的是,找矿中采样粒度是有条件的,其目的是为了寻找该元素的最富集的粒度。区域土壤地球化学测量的目的是,通过发现测区内各种元素异常以找到各种矿产。因而采样及过筛时要保留各种粒度的样品,使样品具有代表性,以免漏掉异常。

    对于运积层覆盖区进行地球化学测量还必须从以下几方面引起重视: ①确定测区时,注意了解覆盖层下的控矿地质条件。包括岩性、断裂带、岩体、接触带等特征。②进行地球化学测量之前要认真调查运积层的厚度及其组成特征。一般来讲厚度小于 5m 时,成矿元素由于水成分散,地表有次生晕显示,通过地表浅层取样可能有效地进行找矿。厚度在 5 ~25m 时,地面异常显著减弱,进行地面浅层取样时,必须采取适当的分析方法,才能取得较好的找矿效果。厚度超过 25m 时,上置晕多以隐伏状态存在,样品需要地采集钻孔样品。③在运积层厚度不很大时,开始尽可能地进行地面浅层取样以发现异常,然后对异常进行剖面性的深部取样检查以追踪被掩埋的矿床,测网一般由疏而密。④运积层覆盖区的异常一般均较弱,给发现及评价异常带来困难。为了提高其衬度,样品多采取偏提取的分析方法,或特征性元素组合和特征性景观元素组合的比值来区分矿致异常与非矿致异常。

    绿色地质勘查工作规范

    土壤地球化学分区是对长期地质历史过程中地球表生带在各种地质综合作用下所形成的性质不同的地球化学场特征的归纳与合并。研究区由于其独特的地质、地理、拆缺差地貌特征等差异,使区域内成土母质体由于同生和后生地球化学作用,造成元素及元素组合的进一步演化而具有不均匀分布特征,从而形成具有不同成分或不同元素组合的地球化学分区。

    一、分区依据与方法

    地球化学分区主要理论依据:

    1)不同地质背景、不同类型的成土母质在物质来源、岩石矿物组成等方面存在着巨大的扮哪差异,其元素的组成与地球化学行为也各具不同的特征,导致土壤地球化学组合特征呈现地域性差异,是土壤地球化学分区的理论基础。

    2)调查区地貌类型复杂,地貌形态及成因不同,所形成的成土母质的物质组成也不同,是土壤地球化学分区的依据。

    3)主导性原则和综合性原则相结合。主导性原则,把来自地质环境在区域范围内具有明显分异,并与其他元素具有相关性的元素定义为特征元素。特征元素的区域背景是地球化学区带划分的主导因素。综合性原则,分区过程中综合考虑地质背景、地貌景观特点、元素地球化学组合特点和环境特点进行。

    4)用因子分析的方法进行变量降维和指标组合,从指标组合特征寻求分区信息。聚类分析和因子分析得到的土壤中线性相关程度高的两个或多个元素(或指标)地球化学组合,是地球化学分区特征元素选择的理论依据。如造岩氧化物(SiO2,Al2O3,K2O,Na2O,CaO,MgO)、亲铁元素或组分(Fe2O3,Mn,Ti,V,Co,Cr,Ni)、亲硫元素(Cu,Pb,Zn,Cd,Hg,As,Sb,Bi)、亲石元素(W,U,Th,Tl,La,Nb,Rb)和土壤养分元素(N,P,S,OrgC)等。

    在一个地球化学区范围内,由于元素性质的差异或在表生作用过程中造成元素及元素组合的进一步演化而具有不均匀分布特征,从而形成了许多富集不同元素或元素组合的次一级地球化学分区单位,如地球化学亚区、地球化学亚带等。

    二、地球化学分区及特征

    根据上述土壤地球化学分区原则及方法,全区共划分4个地球化学区和9个地球化学亚区(图3-22),由图3-22可见,土壤地球化学分区结果对地质背景或大地构造反应灵敏,地质(构造)界线在一定程度上反映了分区边界。各分区元素组合特征见表3-9。

    图3-22 鲁东地区土壤地球化学分区图

    表3-9 鲁东地区土壤地球化学分区特征表

    续表

    (一)莒南-威海地球化学区(Ⅰ)

    该地球化学区位于青岛-五莲断裂和即墨-牟平断裂带一线以南地区,包括日照大部分、威海全部、青岛和烟台部分地区。区内地质背景以中生代花岗岩、石英二长岩和新元古代花岗质片麻岩为主,局部有中生代火山岩出露,而地层分布面积有限,仅见于河流Ⅰ级阶地。土壤地球化学特征总体上承袭了岩石地球化学的特点。土壤中Nb,Rb,Be,Mo,Al2O3,K2O,Ba,Ce,Sr,pH,CaO,NaO等元素和组分呈高背景,Au,Ag,Hg,B,Sb,Cu,S,Br,C,N,Ni,Cr,MgO,Li,As等元素和组分呈低背景。可进一步细分为3个地球化学亚区和5个地球化学小区,分区特征如下:

    1.胶南-临沭地球化学亚区(Ⅰ-1)

    土壤母质以石英二长岩、二长花岗质片麻岩形成的风化物为主,土壤类型为棕壤、酸性粗骨土,局部发育潮棕壤、潮土。土壤中Ba,Be,Bi,Cd,Ce,La,Mo,Nb,Th,Tl,U,Zn,K2O,Na2O,Al2O3等元素呈和组分高背景,As,B,Br,Co,Cr,Cu,F,Li,Ni,V,pH,MgO,Fe2O3等元素呈低背景。

    黄岛地球化学小区(SⅠ-1)位于黄岛东南部,成土母质为正长花岗旅皮岩,局部出露黄色粉土、含砂亚黏土及砾石层,土壤类型以棕壤、酸性粗骨土为主。小区土壤中Ag,Au,Be,Bi,Cd,Ce,Co,Hg,La,Mo,U,Zr等元素呈高背景,As,Cu,F,N等少数元素呈低背景,其余元素则接近全区背景值。区内有铁矿、金矿、锆石砂矿等矿点,成矿地质条件有利。

    2.青岛-威海地球化学亚区(Ⅰ-2)

    土壤母质以花岗质片麻岩、闪长质片麻岩及二长花岗岩风化物为主,土壤类型为酸性粗骨土,少量酸性石质土、棕壤、棕壤性土。土壤中大多数元素呈背景值分布,仅有少量元素如Au,As,Ag,Ba,Be,Bi,Cd,Ce,Co,Cu,F,Hg,Sb,Ni等呈零星高背景,可能为矿化作用所致;而Br,C,N,Sc,Ti,V,Y,Zn,pH,OrgC,CaO,MgO,Fe2O3等元素和组分呈低背景。

    1)牟平-乳山地球化学小区(SⅠ-2-1)分布在牟乳断裂带及其附近,是鲁东地区继招-莱金矿田之后的第二个重要的成矿带。区内构造十分发育,主要以北东向和北北东向断裂为主,其中北北东向断裂带矿点密集,分布着金青顶金矿、唐家沟金矿、初家沟金矿、英格庄金矿、胡家庄金矿、三甲金矿等众多矿床。土壤中以Ag,As,Au,Ba,Cd,Hg,Ni等元素高背景,Br,Cl,I,Ge,Li元素低背景为特征。

    2)崂山地球化学小区(SⅠ-2-2)成土母质主要为花岗岩风化形成的残坡积物,土壤以酸性粗骨土、棕壤性土和潮棕壤为主,土壤元素整体继承了成土母岩元素含量特征。小区土壤中Ag,Be,Bi,C,Cd,Cl,Hg,La,Mo,N,Nb,Pb,Rb,S,Se,Sn,Th,Tl,U,W,Zn,OrgC,K2O,Na2O 等多数元素为高背景,As,B,Ba,Br,Co,Cr,Ni,Sr,V,CaO,MgO,Fe2O3等少数元素为低背景,其余元素则接近全区背景值。

    3.荣成地球化学亚区(Ⅰ-3)

    包括荣成市全部、文登市东南及环翠区东部地区,区内成土母质主要为二长花岗岩、花岗闪长岩、石英正长岩和花岗质片麻岩等近源岩石风化残坡积物。区内土壤中Bi,Ce,Cl,Ga,I,La,Mo,Nb,P,Sr,Na2O,Al2O3等元素和组分呈高背景,As,B,C,Cd,Li,N,S,Sb,Sn,pH,OrgC,SiO2等元素和组分呈低背景。

    1)石岛地球化学小区(SⅠ-3-1)成土母质为石英正长岩风化残坡积物,土壤发育为酸性石质土、酸性粗骨土,近海地段以海相沉积物为母质,土壤发育为滨海盐土。土壤中Ba,Be,Bi,Br,C,Ce,Cl,Co,F,I,Hg,La,Mn,Mo,Nb,Pb,Rb,S,Sb,Se,Sn,Sr,Th,Ti,Tl,U,V,Y,Zn,Fe2O3,Al2O3,K2O等元素和组分为高背景,SiO2,Na2O等少数组分为低背景分布为特征。

    2)伟德山地球化学小区(SⅠ-3-2)成土母质以二长花岗岩、花岗闪长岩风化物为主,土壤类型主要为酸性石质土、酸性粗骨土。区内 As,Au,B,Ba,Ge,Mn,Sc,Y,pH,SiO2等元素和组分呈低背景;Ag,Be,Bi,C,Cd,Ce,Co,Cr,Cu,F,Ga,La,Mo,N,Nb,Ni,P,Rb,Sr,Th,U,W,OrgC,K2O,Na2O,MgO,Al2O3等元素呈高背景,而在小区外围,这些元素和组分则多呈低背景,在地球化学图上表现为被一个呈“凹”字形的贫化区包围其中,这一现象显示出在强烈地质作用下,成矿元素由分散到集中的演化结果,区内矿化普遍,以热液充填型及蚀变岩型为主,是寻找有色金属、贵金属矿床的有利地区。

    (二)烟台地球化学区(Ⅱ)

    位于烟台市北部胶北隆起区,区内地质背景以广泛分布新元古代二长岩和闪长岩为特点,另有小面积元古宙黑云变粒岩、石英岩、大理岩。土壤类型主要以酸性粗骨土和棕壤为主,潮棕壤、酸性石质土较发育。土壤中Ag,Au,Bi,Cd,Cl,Cu,F,Ga,Hg,Pb,S,Sb,Sr,Zn,Na2O,CaO,MgO,Al2O3,Fe2O3等元素和组分呈高背景,Ce,Nb,U,Y,Zr,pH,SiO2等元素和组分呈低背景。可进一步细分为2个地球化学亚区和1个地球化学小区。

    1.福山-栖霞-莱阳地球化学亚区(Ⅱ-1)

    地质背景以新太古代栖霞超单元闪长岩为主,有少量中生代火山岩和古元古代粉子山群黑云变粒岩、大理岩,土壤地球化学特征总体上承袭了岩石地球化学的特点。土壤中Au,Ag,As,B,Bi,Cd,Co,Cr,Cu,F,Ga,Li,Ni,Sc,V,W,CaO,MgO,Fe2O3,SiO2等元素和组分呈高背景,Ba,Be,I,Nb,Rb,Sr,SiO2等元素和组分呈低背景。

    2.蓬莱-莱州地球化学区亚区(Ⅱ-2)

    成土母质以新元古代二长花岗岩和闪长质片麻岩形成的残坡积物为主,少量冲海积粉砂类物质,土壤类型以棕壤、酸性粗骨土为主,少量潮土和滨海盐土。土壤中Au,Ag,Bi,Cd,Ga,Hg,S,Sr等元素为高背景,Ce,Co,Cr,Ge,La,Mn,Nb,Sc,Th,Ti,U,V,Y,Zr,pH等元素呈低背景。

    招莱地球化学小区(SⅡ-2)地质背景主要为新元古代玲珑超单元二长花岗岩。土壤中低背景元素和组分为Co,Cr,Ge,Mn,Nb,Sc,Ti,U,V,Y,MgO,CaO,TFe2O3和高背景元素和组分为 Au,Ag,As,Bi,Be,Cd,Ga,Hg,N,Pb,S,Sb,Sn,Sr,OrgC,SiO2,K2O,Na2O。高背景区大致沿焦家断裂、招平断裂、金牛山断裂及其次级断裂两侧呈近东西向展布,小区囊括了胶北石英脉型和蚀变岩型的特大、大型、中型金矿床,小型矿床星罗棋布。受金成矿地质作用及开采、选冶等影响,该区土壤中大部分重金属元素的含量相对较高,并已在部分地区表层土壤中出现重金属富集现象。

    (三)青岛-潍坊地球化学区(Ⅲ)

    分布在胶莱盆地及其北部潍河、弥河冲积平原区,地质背景以第四系及中生代火山岩为主,零星分布古元古代黑云片岩、大理岩。土壤类型主要为砂礓黑土、棕壤、潮土,少量滨海盐土和中性粗骨土。土壤中As,B,Br,C,Sb,pH,CaO,SiO2等呈高背景,Ba,Be,Ce,Co,Cu,Ga,La,Mn,Mo,Nb,Ni,Rb,Ti,Zn,Zr,K2O,Al2O3,TFe2O3等呈低背景。可进一步细分为2个地球化学亚区和3个地球化学小区。

    1.莱西-胶州-诸城地球化学亚区(Ⅲ-1)

    包括莱西、即墨和胶州部分地区。区内地质背景以中生代火山岩为主,第四纪黏质砂土、亚黏土穿插分布在火山岩区中。土壤类型主要以砂礓黑土和棕壤为主,潮棕壤、棕壤性土也较发育。土壤中B,Br,C,Li,Mn,S,V,Zr,SiO2等少数元素呈高背景,Ba,Be,Ga,Mo,Rb,Sr,K2O,Na2O,Al2O3等元素呈低背景,其余大部分元素则与全区背景值较为接近。

    胶州湾北(SⅢ-1)地球化学小区地势低平,以海相沉积物为母质,土壤发育为滨海潮滩盐土和滨海盐土,S,Br,Cl,I,pH等元素或指标呈高背景。土壤质地以黏质成分为主,As,Cu,Hg,Mn,Zn等重金属呈高背景,仅Sr,SiO2含量偏低。

    2.高密-昌邑地球化学亚区(Ⅲ-2)

    土壤母质以第四纪冲积物、沉积物为主,并兼有湖积物母质特征,土壤类型主要为砂礓黑土、棕壤。土壤中大多数元素呈背景值分布,仅 As,B,Ba,Br,Cl,F,S,pH,CaO等偏高,Ag,Ba,Be,Ce,Co,Cu,Ga,Ge,Mo,Mn,Nb,Pb,Rb,Zn,K2O,Na2O,Al2O3,TFe2O3等偏低。

    马戈庄地球化学小区(SⅢ-2)成土母质为古元古代黑云片岩、黑云变粒岩、石墨透辉变粒岩风化物,土壤类型为棕壤性土、棕壤,其外围分布有小面积砂礓黑土。是青岛重要的石墨矿产地,分布着众多石墨矿点。土壤中大多数元素和组分继承了成土母岩特点,Ag,As,Au,Cd,Cl,Co,Cr,Cu,F,Hg,Mo,Ni,S,Sc,Se,C,Zn,CaO,MgO,Fe2O3等多数元素呈高背景,Ba,Be,Sr,K2O,Na2O,SiO2等元素和组分呈低背景。从元素组合特点来看,Ag,Au异常与Co,Cr,Cu,Hg,Mo,Ni,Zn等异常相伴生,可作为寻找贵金属矿及有色金属矿的有利区带。

    昌邑沿海地球化学小区(SⅢ-2-2)分布在昌邑北部沿海一带,地势低平,受海相沉积环境及海侵影响,土壤中 B,S,Br,Cl,CaO,pH 等元素或指标偏高,而 Ag,Au,Ba,Be,Bi,C,Cd,Co,Cu,F,Ga,Ge,Hg,I,Li,Mn,Mo,N,P,Ni,Nb,Pb,Rb,Sb,Sn,Se,Tl,Zn,OrgC,Al2O3,TFe2O3等绝大多数元素或指标均偏低。

    (四)临朐-莒县地球化学区(Ⅳ)

    该地球化学区位于研究区西部,包括沂水大部、安丘西部及日照西部边缘地带,北北东向的安丘-莒县断裂控制了分区界线。区内地质背景以古元古代二长花岗岩为主,中生代火山岩和新太古代石英闪长岩沿断裂呈近南北向条带状发育为特点,第四系发育局限,主要在沂沭断裂带南段或穿插分布在岩体中,物源主要为就近岩石及山前洪积物。土壤类型主要以中性粗骨土、酸性粗骨土为主,淋溶褐土和棕壤也较发育。从整体来看,本区土壤中Co,Cr,Cu,F,Ni,Sc,Th,Ti,Tl,Zn,MgO,TFe2O3等元素和组分呈高背景,Ba,Br,Cl,I,Zr,SiO2等少数元素和组分呈低背景。该地球化学区可进一步划分为沂水地球化学亚区(Ⅳ-1),临朐-马站地球化学亚区(Ⅳ-2),包括临朐东地球化学小区(SⅣ-2)。

    1.沂水地球化学亚区(Ⅳ-1)

    该地球化学亚区位于沂水县东南及莒南县东部,新太古代石英闪长岩和中太古代花岗闪长岩为主的地质背景控制了元素分布格局。土壤类型以棕壤、白浆化棕壤为主。区内断裂构造发育,成矿地质条件有利,分布有众多的铁矿点和金矿点,另外本次调查新发现沂水南部土壤中存在近南北向椭圆状的Au,Ag及Cd,Pb等元素异常,面积约262km2,各元素间异常套合较好、强度较高,可能为深部金矿化作用所致,具有一定找矿前景。从整体看,本区土壤中仅Au,Hg元素呈高背景,As,B,Bi,Be,Br,Ce,F,Ga,Ge,I,La,Li,Mo,Nb,Pb,Sb,Sn,U,Y,Zn,W,pH,Al2O3等多数元素呈低背景。

    2.临朐-马站地球化学亚区(Ⅳ-2)

    该亚区位于研究区西北部临朐—马站。区内地质背景以古元古代二长花岗岩为主,在安丘-莒县断裂和鄌郚-葛沟断裂之间为中生代火山岩区,临朐东部有小面积新近纪临朐群玄武岩。土壤类型主要以潮褐土和棕壤为主,酸性粗骨土、中性粗骨土也较发育。本亚区土壤中Be,Co,Cr,Cu,F,Ga,Li,Nb,Ni,P,Rb,Sc,Th,Ti,U,V,Y,Zn,MgO,TFe2O3等元素和组分呈高背景,Ag,B,Ba,Br,Cl,I,Se,Zr,K2O,SiO2等少数元素和组分呈低背景,其余大部分元素则与全区背景值较为接近。

    临朐东地球化学小区(SⅣ-2)分布范围明显受控于临朐群玄武岩。土壤中Co,Ni,Mn,Cu,Cr等亲铁元素的富集范围与临朐群玄武岩分布极其吻合,且表层土壤与深层土壤同时出现富集,深层土壤丝毫不比表层土壤含量低,很显然本小区土壤Co,Ni,Mn,Cu,Cr等元素的富集是玄武岩风化成土所致。土壤中Ba,Co,Cr,Cu,Ga,Mn,Mo,Nb,Ni,P,Sc,Ti,V,Zn,Mg,TFe2O3等元素和组分呈高背景,Cl,Pb,Rb,Se,Tl,K2O,Na2O,SiO2等少数元素和组分呈低背景。

    勘察地球化学

    所谓元素含量的区域性特征,此处是指由土壤物质组成决定的元素含量的区域性差异。通过与东部平原区土壤中元素含量的对比,可以清楚看出这种变化(表2-9)。从总体上讲,这种差异是由成壤母质特性和自然景观条件决定的,为了突出不同统计单元元素含量特点,以下按统计单元对元素含量的区域性特征进行叙述。

    表2-9 中国东部平原区土壤地球化学基准值标准化值

    续表

    续表

    三江平原土壤粒级组成中,黏粒、粉砂粒所占比例比较大,分别为17%和68%;而砂粒含量比例比较小,只有15%。蒙脱石是出现最多的黏土矿物,占25%,其次是水云母和高岭石,分别是23%和6%。原生矿物中,长石含量25%,石英含量占20%,方解石等矿物含量少量。土壤物质组成的这些特性决定了该地区土壤中元素含量状况,与整个东部平原区土壤中元素含量相比,三江平原多数元素表现出富集特性。造岩元素SiO2、MgO、CaO发生贫化,尤其是CaO贫化达一倍以上;Al2O3、Na2O、K2O富集,其中Al2O3、Na2O富集程度达10%以上;铁族元素中,Mn、MnO和FeO贫化,Co含量持平,Ti、TiO2、V、Cr、TFe2O3、Fe2O3、Ni富集;亲铜成矿元素中除Sb以外,其余全部富集;钨钼族元素全部富集;Pt贫化,Pd含量与顷链整个东部土壤Pd含量相当;放射性元素、稀土元素均富集;稀有元素中Li、Be富集,Nb、Ta、Sc含量持平,Zr、Hf贫化;除Sr轻微贫化以外,其他亲石分散元素均富集;亲铜分散元素中,只有Cd贫化;矿化剂、卤素元素中出现贫化的元素比较多,包括B、C(CO2)、S、Cl、Br、I;pH值偏低,电导率(EC)明显低于其他地区,H2O+含量高。

    松辽平原的情况与三江平原相反,土壤蔽樱中元素含量普遍低于整个东部平原。在参加统计的88项指标中,仅有SiO2、K2O、Na2O、Mo、Zr、Hf、Sr、Ba、Tl、I以及Org.C、pH值等指标含量略有增高,Ag、Be、In与东部平原相应元素含量持平,其余73项指标含量均程度不同地降低。元素含量普遍低的原因还是与土壤物质组成有关,其中最直接的原因是砂粒级土壤颗粒所占比例比较大,达到35%,而黏粒和粉砂粒所占比例相对比较小,合计65%。与此相对应,黏土矿物含量降低,而石英、长石等原生矿物含量升高,此外,该地区土壤中方解石所占比例也比较大,成为矿物组成上的特点之一。

    在参加统计的8个平原内,黄淮海平原土壤中砂粒级颗粒所占的含量比例最大,为38%,粉砂粒含量比例最低,只有12%。与三江平原和松辽平原不同,矿物组成中水云母取代蒙脱石、石英取代长石分别成为最主要的黏土矿物和原生矿物,高岭石含量也有所增加,方解石含量是8个平原中最高的,并且出现了绿泥石。土壤物质组成的上述特点,决定了土壤中元素含量状况。与东部平原土壤中元素含量对比,黄淮海平原只有少数元素含量增高,多数元素含量降低,不过含量增高或降低的元素(指标)与松辽平原存在明显不同,反映出土壤矿物组成间的差异。黄淮海平原含量增高元素(指标)有造岩元素MgO、CaO、Na2O,铁族元素Cr、FeO、Ni,亲铜元素Au、As、Sb,亲石分散元素Sr,矿化剂、卤素元素B、C、CO2、P、P2O5、F、Cl、Br以及pH值、电导率(EC)等。

    长江三角洲土壤中黏粒、粉砂粒含量均较黄淮海平原有所增加雀并孙,分别为15%和58%,砂粒含量降低,为27%。水云母是主要的黏土矿物,其次是蒙脱石和高岭石,石英含量明显高于长石。与东部平原土壤矿物组成相比,长石、蒙脱石含量有所降低,但是石英和水云母、高岭石含量增加。土壤中元素含量的变化趋势与土壤物质组成的上述特征显示出一定的相关性,特别是与土壤粒级组成关系更加直接。由于细粒级土壤颗粒所占比例增大,土壤中大多数元素含量高于东部平原土壤地球化学基准值,但是也有造岩元素中的MgO、CaO、Na2O、K2O,亲铜成矿元素中的Au、Ag、As、Sb,钨钼族元素中的Mo,亲石分散元素中的Sr、Ba,亲铜分散元素中的Cd、Ga、Tl,矿化剂元素C(C、CO2),卤素元素F、Cl、Br以及pH值、电导率、H2O+等指标含量低于东部平原土壤地球化学基准值。

    位于长江三角洲平原上游的江汉平原,其土壤粒级组成特征表现为黏粒、粉砂粒级颗粒组成比例更大,达到了17%和62%,砂粒比例更低,仅有21%。矿物组成特征与长江三角洲平原类似,只是黏土矿物所占比例增大,石英、长石等矿物所占比例更低。受土壤物质组成控制,土壤中绝大多数元素的含量高于东部平原土壤地球化学基准值,只有造岩元素中的SiO2、CaO、Na2O、K2O,亲石分散元素中的Sr,矿化剂元素C(C、CO2)、S,卤素元素Cl、Br、I以及pH值、电导率等指标含量低于东部平原土壤地球化学基准值。

    鄱阳湖平原土壤中黏粒含量为21%,在所有参加统计的平原中含量最高,粉砂粒含量为67%,属较高含量水平,由此决定土壤中砂粒含量比例很小,只有12%。黏土矿物中,蒙脱石含量20%,基本属于中等含量水平;水云母含量31%,为所有参加统计平原中最高的;高岭石含量占12%,为次高含量水平。黏土矿物的高含量比例,势必导致石英、长石等原生矿物含量比例降低,尤其是长石,仅有7.3%;在所有参加统计平原中含量最低,不过石英含量达28%,处于较高含量水平。土壤物质组成的上述特点,决定了土壤中元素含量特征。与东部平原土壤地球化学基准值相比,元素含量普遍升高,个别元素诸如造岩元素MgO、CaO、Na2O、K2O,铁族元素Mn(Mn、MnO)、Fe(FeO),亲石分散元素Sr、Ba,矿化剂元素C(C、CO2)、P(P、P2O5)、S,卤素元素Cl、Br以及pH值、电导率等指标含量偏低。

    南阳盆地土壤粒级组成最大的特点是粉砂粒组分含量比例很大,达到了74%;黏粒含量为18%;砂粒级颗粒组成仅有8%;是细粒级土壤组分所占比例最高的地区。黏土矿物含量从高到低的顺序依次是水云母、蒙脱石和高岭石,分别为29%、24%和7.6%。石英占矿物组成的24%,长石占15%。由于细粒级土壤颗粒组成所占比例大,导致土壤中多数元素含量较东部平原土壤地球化学基准值高。不过造岩元素SiO2、MgO、CaO、Na2O、K2O,铁族元素Fe(FeO),钨钼族元素Mo,稀有元素Zr,亲石分散元素Sr,亲铜分散元素Cd、Se,矿化剂元素C(C、CO2)、N、P(P、P2O5)、S,卤素元素Cl、Br,以及pH值、电导率等低于东部平原土壤地球化学基准值。

    珠江三角洲和松辽平原土壤粒级组成基本相同,总体上细粒级组分含量比例比较高,黏粒为11%,粉砂粒54%,砂粒35%。土壤中元素含量差异却很大,具体表现在松辽平原大多数元素含量低于整个东部平原土壤地球化学基准值,而珠江三角洲除造岩元素MgO、CaO、Na2O、K2O,铁族元素Mn(Mn、MnO)、Fe(Fe2O3)、Ni,亲铜元素Au,亲石分散元素Sr、Ba,亲铜分散元素Ga,矿化剂元素C(CO2),卤素元素I以及pH值等指标以外,其他元素(指标)含量均高于东部平原土壤基准值。出现这种现象可能是受土壤矿物组成的影响。同其他试验区相比,珠江三角洲地区土壤矿物组成的最大特点是高岭石含量显著偏高,达到18%,已经与蒙脱石含量水平相当;而在其他试验区,高岭石的含量最多也只有蒙脱石含量的一半。原生矿物中,石英占绝对主导地位,含量高达30%,长石含量只有8.5%。

    猜你喜欢