初中数学公理有哪些?初中数学的九个公理:1、过两点有且只有一条直线。2、两点之间线段最短。3、同角或等角的补角相等。4、同角或等角的余角相等。5、过一点有且只有一条直线和已知直线垂直。6、直线外一点与直线上各点连接的所有线段中,那么,初中数学公理有哪些?一起来了解一下吧。
1 过两点有且只有一条直线 2 两点之间线段最短 3 同角或等角的补角相等 4 同角或等角的余角相等 5 过一点有且只有一条直线和已知直线垂直 6 直线外一点与直线上各点连接的所有线段中,垂线段最短 7 平行公理 经过直线外一点,有且只有一条直线与这条直线平行 8 如果两条直线都和第三条直线平行,这两条直线也互相平行
初中数学的九个公理:
1、过两点有且只有一条直线。
2、两点之间线段最短。
3、同角或等角的补角相等。
4、同角或等角的余角相等。
5、过一点有且只有一条直线和已知直线垂直。
6、直线外一点与直线上各点连接的所有线段中,垂线段最短。
7、平行公理经过直线外一点,有且只有一条直线与这条直线平行。
8、如果两条直线都和第三条直线平行,这两条直线也互相平行。
9、同位角相等,两直线平行。
初中数学的基本公式和定理有哪些?想了解的小伙伴看过来,下面由我为你精心准备了“ 初中数学公式和定理有哪些”仅供参考,持续关注本站将可以持续获取更多的资讯!
初中数学公式和定理有哪些
1、初中数学公式
完全平方公式:(a+b)^2=a^2+2ab+b^2 (a-b)^2=a^2-2ab+b^2
平方差公式:(a+b)(a-b)=a^2-b^2
乘法与因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)
三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b
|a-b|≥|a|-|b| -|a|≤a≤|a|
一元二次方程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a
根与系数的关系 X1+X2=-b/a X1*X2=c/a 注:韦达定理
2、判别式
b2-4ac=0 注:方程有两个相等的实根
b2-4ac>0 注:方程有两个不等的实根
b2-4ac<0 注:方程没有实根,有共轭复数根
3、三角函数公式
两角和公式
sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)
ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)
倍角公式
tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga
cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
半角公式
sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))
ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))
4、和差化积
2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)
2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)
sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB
ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB
5、某些数列前n项和
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2
2+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6
13+23+33+43+53+63+…n3=n2(n+1)2/4 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3
正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圆半径
余弦定理 b2=a2+c2-2accosB 注:角B是边a和边c的夹角
圆的标准方程 (x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标
圆的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0
抛物线标准方程 y2=2px y2=-2px x2=2py x2=-2py
直棱柱侧面积 S=c*h 斜棱柱侧面积 S=c'*h
正棱锥侧面积 S=1/2c*h' 正棱台侧面积 S=1/2(c+c')h'
圆台侧面积 S=1/2(c+c')l=pi(R+r)l 球的表面积 S=4pi*r2
圆柱侧面积 S=c*h=2pi*h 圆锥侧面积 S=1/2*c*l=pi*r*l
弧长公式 l=a*r a是圆心角的弧度数r >0 扇形面积公式 s=1/2*l*r
锥体体积公式 V=1/3*S*H 圆锥体体积公式 V=1/3*pi*r2h
斜棱柱体积 V=S'L 注:其中,S'是直截面面积, L是侧棱长
柱体体积公式 V=s*h 圆柱体 V=pi*r2h
初中数学定理
1、过两点有且只有一条直线
2、两点之间线段最短
3、同角或等角的补角相等
4、同角或等角的余角相等
5、过一点有且只有一条直线和已知直线垂直
6、直线外一点与直线上各点连接的所有线段中,垂线段最短
7、平行公理经过直线外一点,有且只有一条直线与这条直线平行
8、如果两条直线都和第三条直线平行,这两条直线也互相平行
9、同位角相等,两直线平行
10、内错角相等,两直线平行
11、同旁内角互补,两直线平行
12、两直线平行,同位角相等
13、两直线平行,内错角相等
拓展阅读:中考数学成绩不高的原因
一、定理掌握不牢固
在我们做数学题的时候,会发现很多同学基础的题目很容易出错,看似很简单,但是就是拿不到分数,是因为定理不记得,等到考试过后才发现,原来题目如此简单。
直线、线段、射线
1. 过两点有且只有一条直线.
(简:两点决定一条直线)
2.两点之间线段最短
3.同角或等角的补角相等.
同角或等角的余角相等.
4. 过一点有且只有一条直线和已知直线垂直
5. 直线外一点与直线上各点连接的所有线段中,垂线段最短. (简:垂线段最短)
平行线的判断
1.平行公理 经过直线外一点,有且只有一条直线与这条直线平行.
2.如果两条直线都和第三条直线平行,这两条直线也互相平行(简:平行于同一直线的两直线平行)
3.同位角相等,两直线平行.
4.内错角相等,两直线平行.
5.同旁内角互补,两直线平行.
平行线的性质
1.两直线平行,同位角相等.
2.两直线平行,内错角相等.
3.两直线平行,同旁内角互补.
三角形三边的关系
1.三角形两边的和大于第三边、三角形两边的差小于第三边.
三角形角的关系
1. 三角形内角和定理 三角形三个内角的和等于180°.
2.直角三角形的两个锐角互余.
3.三角形的一个外角等于和它不相邻的两个内角的和.
4. 三角形的一个外角大于任何一个和它不相邻的内角.
全等三角形的性质、判定
1.全等三角形的对应边、对应角相等.
2.边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等.
3. 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等.
4.推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等.
5. 边边边公理(SSS) 有三边对应相等的两个三角形全等.
6. 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等.
角的平分线的性质、判定
性质:在角的平分线上的点到这个角的两边的距离相等.
判定:到一个角的两边的距离相同的点,在这个角的平分线上.
等腰三角形的性质
1.等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角).
2.推论1 等腰三角形顶角的平分线平分底边并且垂直于底边 .
3.等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合.
4.推论3 等边三角形的各角都相等,并且每一个角都等于60° .
等腰三角形判定
1等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)
2.三个角都相等的三角形是等边三角形.
3.有一个角等于60°的等腰三角形是等边三角形.
线段垂直平分线的性质、判定
1. 定理: 线段垂直平分线上的点和这条线段两个端点的距离相等 .
2.逆定理:和一条线段两个端点距离相等的点,在这条线段的垂直平分线上.
3.线段的垂直平分线可看作和线段两端点距离相等的所有点的集合.
轴对称、中心对称、 平移、旋转
1. 关于某条直线对称的两个图形是全等形
2.如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线
3.两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上
4.若两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称.
5.关于中心对称的两个图形是全等的.
关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分.
6. 若两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点成中心对称.
7.平移或旋转前后的图形是不变的.中心对称是旋转的特殊形式。
初中数学公理和定理(北师版)
一、公理(不需证明)
1、两直线被第三条直线所截,如果同位角相等,那么这两条直线平行;
2、两条平行线被第三条直线所截,同位角相等;
3、两边夹角对应相等的两个三角形全等; (SAS)
4、角及其夹边对应相等的两个三角形全等; (ASA)
5、边对应相等的两个三角形全等; (SSS)
6、等三角形的对应边相等,对应角相等.
7、线段公理:两点之间,线段最短。
8、直线公理:过两点有且只有一条直线。
9、平行公理:过直线外一点有且只有一条直线与已知直线平行
10、垂直性质:经过直线外或直线上一点,有且只有一条直线与已知直线垂直
注:(1)其中1-6要求能作为对其它定理进行证明的依据,7-10作为基本事实应了解。
(2)等式和不等式的有关性质也可视为公理。
以下对初中阶段所学的公理、定理进行分类:
一、直线与角
1、两点之间,线段最短。
2、经过两点有一条直线,并且只有一条直线。
3、同角或等角的补角相等,同角或等角的余角相等。
4、对顶角相等
二、平行与垂直
5、经过直线外或直线上一点,有且只有一条直线与已知直线垂直。
6、经过已知直线外一点,有且只有一条直线与已知直线平行。
以上就是初中数学公理有哪些的全部内容,23.角边角公理(ASA):有两角和它们的夹边对应相等的两个三角形全等 24.推论(AAS):有两角和其中一角的对边对应相等的两个三角形全等 25.边边边公理(SSS):有三边对应相等的两个三角形全等 26.斜边、。