高一数学大题?18.(本题满分14分)若函数y= x3- ax2 (a-1)x 1在区间(1,4)内为减函数,在区间(6, ∞)内为增函数,试求实数a的取值范围.19.(本题满分14分)两个二次函数 与 的图象有唯一的公共点 ,那么,高一数学大题?一起来了解一下吧。
一、选择题:本大题共12小题,每小题4分,共48分. 在每小题给出的四个选项中,只有一项是符合题目要求的.
1.已知全集U{1,2,3,4,5,6.7},A{2,4,6},B{1,3,5,7}.则A(CUB)等于
A.{2,4,6} B.{1,3,5} C.{2,4,5} D.{2,5} ( )
2.已知集合A{x|x210},则下列式子表示正确的有( )
①1A
A.1个 ②{1}A B.2个 ③A C.3个 ④{1,1}A D.4个
3.若f:AB能构成映射,下列说法正确的有 ( )
(1)A中的任一元素在B中必须有像且唯一;
(2)A中的多个元素可以在B中有相同的像;
(3)B中的多个元素可以在A中有相同的原像;
(4)像的集合就是集合B.
A、1个 B、2个 C、3个 D、4个
4、如果函数f(x)x22(a1)x2在区间,4上单调递减,那么实数a的取值范围是 ( )
A、a≤3 B、a≥3 C、a≤5 D、a≥5
5、下列各组函数是同一函数的是 ( )
①f(x)
g(x)f(x)
x与g(x)
③f(x)x0与g(x)1
x0 ;④f(x)x22x1与g(t)t22t1。
A、①② B、①③ C、③④ D、①④
6.根据表格中的数据,可以断定方程exx20的一个根所在的区间是
( )A.(-1,0) B.(0,1) C.(1,2) D.(2,3)
7.若lgxlgya,则lg(x)3lg(y22)3 ( )
A.3a B.3
2a C.a D.a2
8、 若定义运算abbabx的值域是( )
aab,则函数fxlog2xlog12
A 0, B 0,1 C 1, D R
9.函数yax在[0,1]上的最大值与最小值的和为3,则a( )
A.11
2 B.2 C.4 D.4
10. 下列函数中,在0,2上为增函数的是( )
A、ylog1(x1) B、ylog22
C、ylog12
2x D、ylog(x4x5)
11.下表显示出函数值y随自变量x变化的一组数据,判断它最可能的函数模型是(
A.一次函数模型 B.二次函数模型
C.指数函数模型 D.对数函数模型
12、下列所给4个图象中,与所给3件事吻合最好的'顺序为 ( )
(1)我离开家不久,发现自己把作业本忘在家里了,于是立刻返回家里取了作业本再上学;
(2)我骑着车一路以常速行驶,只是在途中遇到一次交通堵塞,耽搁了一些时间;
(3)我出发后,心情轻松,缓缓行进,后来为了赶时间开始加速。
①f(0+1)-f(0)=0 f(0)=1
f(1)=1
f(2)-f(1)=2
f(2)=3
f(-1+1)-f(-1)=-2
f(-1)=3
所以二次函数f(x)过
(0,1)(2,3)
(-1,3)
设f(x)=ax²+bx+1
4a+2b+1=3
a-b+1=3
∴a=-b=1
f(x)=x²-x+1
②f(x)-2x>m
x²-x+1-2x=x²-3x+1
f(1)=-1
f(-1)=5
x=-b/2a =3/2 不在[-1,1]上,
∴m<-1
1、由b、c的坐标可得直线bc的斜率k=2/3
则bc上的高的斜率k1=
- 3/2,高过a点,根据点斜式可得bc边上的高所在直线的方程为:
y=
-
3/2x+6
2、由b、c的坐标可得线段bc的中点坐标为:(3,5)中线过a点,根据两点式得bc边上中线所在方程为:
y=
-
x+20
3、bc边上的垂直平分线的斜率为k1=
- 3/2,过中点(3,5),根据点斜式得bc边的垂直平分线的方程为:
y=
-
3/2x+19/2
以o为坐标原点,OA所在直线为x轴建立平面直角坐标系.....
(OA方向为x轴正方向,OB方向为y轴正方向)
设C点坐标为(x,y)A为已知(2,0)B为(0,2)
所以AC=***(用x,y表示)=5
BC=***=根号13
解出C点坐标,然后用余弦定理求角度就可以了
貌似你的图有点问题...AC不和x轴平行的......
over=。=
方法有点烦,话说........
一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)
1.设U=R,A={x|x>0},B={x|x>1},则A∩?UB=()
A{x|0≤x<1} B.{x|0
C.{x|x<0 d="" x="">1}
【解析】 ?UB={x|x≤1},∴A∩?UB={x|0
【答案】 B
2.若函数y=f(x)是函数y=ax(a>0,且a≠1)的反函数,且f(2)=1,则f(x)=()
A.log2x B.12x
C.log12x D.2x-2
【解析】 f(x)=logax,∵f(2)=1,
∴loga2=1,∴a=2.
∴f(x)=log2x,故选A.
【答案】 A
3.下列函数中,与函数y=1x有相同定义域的是()
A.f(x)=ln x B.f(x)=1x
C.f(x)=|x| D.f(x)=ex
【解析】 ∵y=1x的定义域为(0,+∞).故选A.
【答案】 A
4.已知函数f(x)满足:当x≥4时,f(x)=12x;当x<4时,f(x)=f(x+1).则f(3)=()
A.18 B.8
C.116 D.16
【解析】 f(3)=f(4)=(12)4=116.
【答案】 C
5.函数y=-x2+8x-16在区间[3,5]上()
A.没有零点 B.有一个零点
C.有两个零点 D.有无数个零点
【解析】 ∵y=-x2+8x-16=-(x-4)2,
∴函数在[3,5]上只有一个零点4.
【答案】 B
6.函数y=log12(x2+6x+13)的值域是()
A.R B.[8,+∞)
C.(-∞,-2] D.[-3,+∞)
【解析】 设u=x2+6x+13
=(x+3)2+4≥4
y=log12u在[4,+∞)上是减函数,
∴y≤log124=-2,∴函数值域为(-∞,-2],故选C.
【答案】 C
7.定义在R上的偶函数f(x)的部分图象如图所示,则在(-2,0)上,下列函数中与f(x)的单调性不同的是()
A.y=x2+1 B.y=|x|+1
C.y=2x+1,x≥0x3+1,x<0 D.y=ex,x≥0e-x,x<0
【解析】 ∵f(x)为偶函数,由图象知f(x)在(-2,0)上为减函数,而y=x3+1在(-∞,0)上为增函数.故选C.
【答案】 C
8.设函数y=x3与y=12x-2的图象的交点为(x0,y0),则x0所在的区间是()
A.(0,1) B.(1,2)
C(2,3) D.(3,4)
【解析】 由函数图象知,故选B.
【答案】 B
9.函数f(x)=x2+(3a+1)x+2a在(-∞,4)上为减函数,则实数a的取值范围是()
A.a≤-3 B.a≤3
C.a≤5 D.a=-3
【解析】 函数f(x)的对称轴为x=-3a+12,
要使函数在(-∞,4)上为减函数,
只须使(-∞,4)?(-∞,-3a+12)
即-3a+12≥4,∴a≤-3,故选A.
【答案】 A
10.某新品牌电视投放市场后第1个月销售100台,第2个月销售200台,第3个月销售400台,第4个月销售790台,则下列函数模型中能较好反映销量y与投放市场的月数x之间的关系的是()
A.y=100x B.y=50x2-50x+100
C.y=50×2x D.y=100log2x+100
【解析】 对C,当x=1时,y=100;
当x=2时,y=200;
当x=3时,y=400;
当x=4时,y=800,与第4个月销售790台比较接近.故选C.
【答案】 C
11.设log32=a,则log38-2 log36可表示为()
A.a-2 B.3a-(1+a)2
C.5a-2 D.1+3a-a2
【解析】 log38-2log36=log323-2log3(2×3)
=3log32-2(log32+log33)
=3a-2(a+1)=a-2.故选A.
【答案】 A
12.已知f(x)是偶函数,它在[0,+∞)上是减函数.若f(lg x)>f(1),则x的取值范围是()
A.110,1 B.0,110∪(1,+∞)
C.110,10 D.(0,1)∪(10,+∞)
【解析】 由已知偶函数f(x)在[0,+∞)上递减,
则f(x)在(-∞,0)上递增,
∴f(lg x)>f(1)?0≤lg x<1,或lg x<0-lg x<1
?1≤x<10,或0
或110
∴x的取值范围是110,10.故选C.
【答案】 C
二、填空题(本大题共4小题,每小题4分,共16分.请把正确答案填在题中横线上)
13.已知全集U={2,3,a2-a-1},A={2,3},若?UA={1},则实数a的值是________.
【答案】 -1或2
14.已知集合A={x|log2x≤2},B=(-∞,a),若A?B,则实数a的取值范围是(c,+∞),其中c=________.
【解析】 A={x|0
【答案】 4
15.函数f(x)=23x2-2x的单调递减区间是________.
【解析】 该函数是复合函数,可利用判断复合函数单调性的方法来求解,因为函数y=23u是关于u的减函数,所以内函数u=x2-2x的递增区间就是函数f(x)的递减区间.令u=x2-2x,其递增区间为[1,+∞),根据函数y=23u是定义域上的减函数知,函数f(x)的减区间就是[1,+∞).
【答案】 [1,+∞)
16.有下列四个命题:
①函数f(x)=|x||x-2|为偶函数;
②函数y=x-1的值域为{y|y≥0};
③已知集合A={-1,3},B={x|ax-1=0,a∈R},若A∪B=A,则a的取值集合为{-1,13};
④集合A={非负实数},B={实数},对应法则f:“求平方根”,则f是A到B的映射.你认为正确命题的序号为:________.
【解析】 函数f(x)=|x||x-2|的定义域为(-∞,2)∪
(2,+∞),它关于坐标原点不对称,所以函数f(x)=|x||x-2|既不是奇函数也不是偶函数,即命题①不正确;
函数y=x-1的定义域为{x|x≥1},当x≥1时,y≥0,即命题②正确;
因为A∪B=A,所以B?A,若B=?,满足B?A,这时a=0;若B≠?,由B?A,得a=-1或a=13.因此,满足题设的实数a的取值集合为{-1,0,13},即命题③不正确;依据映射的定义知,命题④正确.
【答案】 ②④
三、解答题(本大题共6小题,共74分.解答时应写出必要的文字说明、证明过程或演算步骤)
17.(本小题满分12分)已知函数f(x)=x2-3x-10的两个零点为x1,x2(x1
【解析】 A={x|x≤-2,或x≥5}.
要使A∩B=?,必有2m-1≥-2,3m+2≤5,3m+2>2m-1,
或3m+2<2m-1,
解得m≥-12,m≤1,m>-3,或m<-3,即-12≤m≤1,或m<-3.
18.(本小题满分12分)已知函数f(x)=x2+2ax+2,x∈[-5,5].
(1)当a=-1时,求f(x)的最大值和最小值;
(2)求实数a的取值范围,使y=f(x)在区间[-5,5]上是单调函数.
【解析】 (1)当a=-1时,
f(x)=x2-2x+2=(x-1)2+1,x∈[-5,5].
由于f(x)的对称轴为x=1,结合图象知,
当x=1时,f(x)的最小值为1,
当x=-5时,f(x)的最大值为37.
(2)函数f(x)=(x+a)2+2-a2的图象的对称轴为x=-a,
∵f(x)在区间[-5,5]上是单调函数,
∴-a≤-5或-a≥5.
故a的取值范围是a≤-5或a≥5.
19.(本小题满分12分)(1)计算:27912+(lg5)0+(2764)-13;
(2)解方程:log3(6x-9)=3.
【解析】 (1)原式
=25912+(lg5)0+343-13
=53+1+43=4.
(2)由方程log3(6x-9)=3得
6x-9=33=27,∴6x=36=62,∴x=2.
经检验,x=2是原方程的解.
20.(本小题满分12分)有一批影碟机(VCD)原销售价为每台800元,在甲、乙两家商场均有销售,甲商场用下面的方法促销:买一台单价为780元,买两台单价为760元,依次类推,每多买一台单价均减少20元,但每台最低不低于440元;乙商场一律按原价的75%销售,某单位需购买一批此类影碟机,问去哪家商场购买花费较少?
【解析】 设购买x台,甲、乙两商场的差价为y,则去甲商场购买共花费(800-20x)x,由题意800-20x≥440.
∴1≤x≤18(x∈N).
去乙商场花费800×75%x(x∈N*).
∴当1≤x≤18(x∈N*)时
y=(800-20x)x-600x=200x-20x2,
当x>18(x∈N*)时,y=440x-600x=-160x,
则当y>0时,1≤x≤10;
当y=0时,x=10;
当y<0 x="">10(x∈N).
综上可知,若买少于10台,去乙商场花费较少;若买10台,甲、乙商场花费相同;若买超过10台,则去甲商场花费较少.
21.(本小题满分12分)已知函数f(x)=lg(1+x)-lg(1-x).
(1)求函数f(x)的定义域;
(2)判断函数f(x)的奇偶性;
【解析】 (1)由1+x>0,1-x>0,得-1
∴函数f(x)的定义域为(-1,1).
(2)定义域关于原点对称,对于任意的x∈(-1,1),
有-x∈(-1,1),
f(-x)=lg(1-x)-lg(1+x)=-f(x)
∴f(x)为奇函数.
22.(本小题满分14分)设a>0,f(x)=exa+aex是R上的偶函数.
(1)求a的值;
(2)证明:f(x)在(0,+∞)上是增函数.
【解析】 (1)解:∵f(x)=exa+aex是R上的偶函数,
∴f(x)-f(-x)=0.
∴exa+aex-e-xa-ae-x=0,
即1a-aex+a-1ae-x=0
1a-a(ex-e-x)=0.
由于ex-e-x不可能恒为0,
∴当1a-a=0时,式子恒成立.
又a>0,∴a=1.
(2)证明:∵由(1)知f(x)=ex+1ex,
在(0,+∞)上任取x1
f(x1)-f(x2)=ex1+1ex1-ex2-1ex2
=(ex1-ex2)+(ex2-ex1)?1ex1+x2.
∵e>1,∴0
∴ex1+x2>1,(ex1-ex2)1-1ex1+x2<0,
∴f(x1)-f(x2)<0,即f(x1)
∴f(x)在(0,+∞)上是增函数.
我为大家提供的高一必修一数学函数的应用测试题,大家仔细阅读了吗?最后祝同学们学习进步。
以上就是高一数学大题的全部内容,解:由题意:A为(cosπ/4,sinπ/4),B为(cosθ,sinθ)。向量OA=(cosπ/4,sinπ/4),向量OB=(cosθ,sinθ)。数量积为cosπ/4cosθ+sinθsinπ/4=3/5。