小学数学鸡兔同笼教案?2、这类题我们把它叫做什么问题好呢?(“鸡兔同笼”问题。)板书。其实,鸡兔同笼问题记载于《孙子算经》一书中,早在1500多年前就有古人在研究它,我们现代人还在研究它,而且还有很多外国人也在研究它。那么,小学数学鸡兔同笼教案?一起来了解一下吧。
鸡兔同笼 问题是我国民间广为流传的数学趣题,最早出现在《孙子算经》中。下面我给你分享数学广角鸡兔同笼论文,欢迎阅读。
数学广角鸡兔同笼论文篇一
教学目标:1.使学生了解“鸡兔同笼”问题,掌握用尝试法、假设法替换法解决问题,初步形成解决此类问题一般性策略。
2.通过自主探索、合作交流,让学生经历用不同的方法解决“鸡兔同笼”问题的过程,在解决问题的过程中,培养学生的思维能力。
3.使学生感受古代数学问题的趣味性,体会到“鸡兔同笼”问题在生活中的广泛应用,提高学习数学的兴趣。
教学重点:用假设法解决“鸡兔同笼”问题。
教学具准备:电脑课件
一、问题引入,分配任务。(每人发一个信封,里面装有题卡和学具)
“有五元和二元两种面额的人民币一共10张,总计32元。两种人民币各有几张?”
二、合作探究,展现拔高。(抽一生上台一一替换,老师记录)
1.启发演示:/让学生先假设这10张全是二元的。于是动手拿出10张二元的(一共二十元,显然不合要求)//然后再一一替换,抽出1张二元的,换上1张五元的,就多了3元,变成了20+3=23元,///再抽出1张二元的,换上1张五元的,就又多了3元,变成了23+3=26////再抽出1张二元的,换上1张五元的,就又多了3元,变成了26+3=29/////再抽出1张二元的,换上1张五元的,就又多了3元,变成了29+3=32。
鸡兔同笼,是中国古代著名典型趣题之一,记载于《孙子算经》之中。鸡兔同笼问题,是小学奥数的常见题型。接下来我搜集了人教版鸡兔同笼教学设计,欢迎查看,希望帮助到大家。
鸡兔同笼教学设计 篇1
教学内容:
人教版《数学》四年级下册P103——P104页数学广角——《鸡兔同笼》。
教材分析:
“鸡兔同笼”问题是我国民间广为流传的有趣的数学问题,最早出现在《孙子算经》中。教材在本单元安排“鸡兔同笼”问题,一方面可以培养学生的逻辑推理能力;另一方面使学生体会代数方法的一般性。对于四年级的学生来说,解决“鸡兔同笼”问题最好的方法是列表法或假设法。“假设法”有利于培养学生的逻辑推理能力,列表法可以让学生经历猜测、验证等解决问题的基本策略。通过两种方法的探究让学生感知解决问题的多样性。因此在解决“鸡兔同笼”问题时,学生选用哪种方法均可,不强求用某一种方法。
教学目标:
1、了解“鸡兔同笼”问题,感受古代数学问题的趣味性。
2、经历自主探究解决问题的过程,能够用列表、假设的方法解决“鸡兔同笼”问题,使学生感知解决问题的多样性。
教学内容:
北师大版数学五年级上册81页《尝试与猜测――鸡兔同笼》
教学目标:
1、通过学习帮助学生学会用列表法解决问题,能对数据进行再认识、再分析,将列表的过程更优化。
2、让学生经历尝试与猜测的过程,在探究的过程中提高学生分析问题解决问题的能力。
3、以古典名题《鸡兔同笼》为载体,让学生体验解决问题方法的多样化, 从而培养学生多种解题能力。
4、让学生了解到解决鸡兔同笼问题的方法在现实生活中的广泛应用,体会学习数学知识的价值。
教学重点:
让学生经历列表、尝试和不断调整的过程,体会解决问题的一般策略――列表。
教学难点:
体会解决问题策略的多样化,培养学生分析问题、解决问题的能力。
课前准备:多媒体课件。
教学过程:
一、游戏引入,渗透列举法
同学们,老师想和你们玩一个猜一猜的游戏,看看谁的反应快:1只鸡是两条腿;1只兔子是四条腿。那么:
1只鸡和5只兔子一共有几条腿?(22条腿)
2只鸡和4只兔子一共有几条腿?(20条腿)有什么简便算法吗?
3只鸡和3只兔子一共有几条腿?(18条腿)
4只鸡和2只兔子一共有几条腿?(16条腿)谁知道老师接下去会问什么问题?
5只鸡和1只兔子一共有几条腿?你怎么知道老师会问这个问题?
说说你是根据什么提出这个问题的?看看你能发现什么?
发现:
①鸡的只数逐渐增加,而兔的只数不断减少;不管怎样增加和减少,它们的总头数都是6个;(板书:6)
②鸡的只数在减少1只的同时,兔的只数就增加1只;
③随着鸡的只数减少,兔的只数增加,它们的腿数依次减少2条,为什么会这样呢?
你们的发现太有价值了,那么根据你们的发现,不用计算能不能推出5只鸡和1只兔子一共有几条腿?(14条腿)根据什么呢?谁来说说?
现在我们来看这个完整的表格:像这样列出表格逐一举出问题的所有情况,这种方法在数学上我们称为列举法。
“鸡兔同笼”问题是这样叙述的:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?”意思就是:笼子里有若干只鸡和兔,从上面数,有35个头,从下面数,有94只脚,问鸡和兔各有多少只?
解此题的方法很多,比较适合小学生理解的方法是“抬腿法”也称“砍腿法”:
下面就用这种方法来解析一下这道题:
前提:假设这些鸡兔都训练有素,能按照我的口令行动。
1、我首先命令每只鸡、兔抬起一条腿,这样鸡还有一条腿着地,兔还有三条腿着地,现在总的着地的腿数=94-35=59;
2、我再次命令每只鸡、兔再抬起一条腿,这样鸡就一屁股坐地下了,兔还有二条腿着地,现在总的着地的腿数=59-35=24;这24条腿都是兔子的。
3、现在命令兔子把抬起的腿全部着地,现在有腿24X2=48;
4、兔子的数量=48÷4=12(只);鸡的数量=35-12=23(只)
建议:讲课的时候不断提问,比如:1、我首先命令每只鸡、兔抬起一条腿,哪位同学能告诉我这样鸡还有多少条腿着地?兔还有多少条腿着地呢?。等等。在教的时候等于在讲故事,故事讲完了题也教完了,很容易被学生理解和接受。
关于这道题的解法这里有很详细的解答,可以参考。网页链接
你是几年级的啊,如果小学的用下面的公式,初中用方程鸡兔同笼问题五种基本公式和例题讲解
【鸡兔问题公式】
(1)已知总头数和总脚数,求鸡、兔各多少:
(总脚数-每只鸡的脚数×总头数)÷(每只兔的脚数-每只鸡的脚数)=兔数;
总头数-兔数=鸡数。
或者是(每只兔脚数×总头数-总脚数)÷(每只兔脚数-每只鸡脚数)=鸡数;
总头数-鸡数=兔数。
例如,“有鸡、兔共36只,它们共有脚100只,鸡、兔各是多少只?”
解一(100-2×36)÷(4-2)=14(只)………兔;
36-14=22(只)……………………………鸡。
解二(4×36-100)÷(4-2)=22(只)………鸡;
36-22=14(只)…………………………兔。
(答略)
(2)已知总头数和鸡兔脚数的差数,当鸡的总脚数比兔的总脚数多时,可用公式
(每只鸡脚数×总头数-脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;
总头数-兔数=鸡数
或(每只兔脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只免的脚数)=鸡数;
总头数-鸡数=兔数。(例略)
(3)已知总数与鸡兔脚数的差数,当兔的总脚数比鸡的总脚数多时,可用公式。
(每只鸡的脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;
总头数-兔数=鸡数。
以上就是小学数学鸡兔同笼教案的全部内容,1、鸡兔同笼,有20个头,56条腿, 鸡、兔各有多少只?从鸡兔同笼问题中取得数学学习的方法,这里的鸡兔不仅仅代表鸡和兔,运用所学的方法可以解决生活中类似的问题。2、停车场里停了三轮车和小汽车共11辆。