当前位置: 首页 > 所有学科 > 数学

小学数学鸡兔同笼教案,鸡兔同笼五种经典解法

  • 数学
  • 2024-04-27

小学数学鸡兔同笼教案?2、这类题我们把它叫做什么问题好呢?(“鸡兔同笼”问题。)板书。其实,鸡兔同笼问题记载于《孙子算经》一书中,早在1500多年前就有古人在研究它,我们现代人还在研究它,而且还有很多外国人也在研究它。那么,小学数学鸡兔同笼教案?一起来了解一下吧。

鸡兔同笼脚差问题

鸡兔同笼 问题是我国民间广为流传的数学趣题,最早出现在《孙子算经》中。下面我给你分享数学广角鸡兔同笼论文,欢迎阅读。

数学广角鸡兔同笼论文篇一

教学目标:1.使学生了解“鸡兔同笼”问题,掌握用尝试法、假设法替换法解决问题,初步形成解决此类问题一般性策略。

2.通过自主探索、合作交流,让学生经历用不同的方法解决“鸡兔同笼”问题的过程,在解决问题的过程中,培养学生的思维能力。

3.使学生感受古代数学问题的趣味性,体会到“鸡兔同笼”问题在生活中的广泛应用,提高学习数学的兴趣。

教学重点:用假设法解决“鸡兔同笼”问题。

教学具准备:电脑课件

一、问题引入,分配任务。(每人发一个信封,里面装有题卡和学具)

“有五元和二元两种面额的人民币一共10张,总计32元。两种人民币各有几张?”

二、合作探究,展现拔高。(抽一生上台一一替换,老师记录)

1.启发演示:/让学生先假设这10张全是二元的。于是动手拿出10张二元的(一共二十元,显然不合要求)//然后再一一替换,抽出1张二元的,换上1张五元的,就多了3元,变成了20+3=23元,///再抽出1张二元的,换上1张五元的,就又多了3元,变成了23+3=26////再抽出1张二元的,换上1张五元的,就又多了3元,变成了26+3=29/////再抽出1张二元的,换上1张五元的,就又多了3元,变成了29+3=32。

鸡兔同笼教材分析及教学建议

鸡兔同笼,是中国古代著名典型趣题之一,记载于《孙子算经》之中。鸡兔同笼问题,是小学奥数的常见题型。接下来我搜集了人教版鸡兔同笼教学设计,欢迎查看,希望帮助到大家。

鸡兔同笼教学设计 篇1

教学内容:

人教版《数学》四年级下册P103——P104页数学广角——《鸡兔同笼》。

教材分析:

“鸡兔同笼”问题是我国民间广为流传的有趣的数学问题,最早出现在《孙子算经》中。教材在本单元安排“鸡兔同笼”问题,一方面可以培养学生的逻辑推理能力;另一方面使学生体会代数方法的一般性。对于四年级的学生来说,解决“鸡兔同笼”问题最好的方法是列表法或假设法。“假设法”有利于培养学生的逻辑推理能力,列表法可以让学生经历猜测、验证等解决问题的基本策略。通过两种方法的探究让学生感知解决问题的多样性。因此在解决“鸡兔同笼”问题时,学生选用哪种方法均可,不强求用某一种方法。

教学目标:

1、了解“鸡兔同笼”问题,感受古代数学问题的趣味性。

2、经历自主探究解决问题的过程,能够用列表、假设的方法解决“鸡兔同笼”问题,使学生感知解决问题的多样性。

鸡兔同笼教学设计优秀

教学内容:

北师大版数学五年级上册81页《尝试与猜测――鸡兔同笼》

教学目标:

1、通过学习帮助学生学会用列表法解决问题,能对数据进行再认识、再分析,将列表的过程更优化。

2、让学生经历尝试与猜测的过程,在探究的过程中提高学生分析问题解决问题的能力。

3、以古典名题《鸡兔同笼》为载体,让学生体验解决问题方法的多样化, 从而培养学生多种解题能力。

4、让学生了解到解决鸡兔同笼问题的方法在现实生活中的广泛应用,体会学习数学知识的价值。

教学重点:

让学生经历列表、尝试和不断调整的过程,体会解决问题的一般策略――列表。

教学难点:

体会解决问题策略的多样化,培养学生分析问题、解决问题的能力。

课前准备:多媒体课件。

教学过程:

一、游戏引入,渗透列举法

同学们,老师想和你们玩一个猜一猜的游戏,看看谁的反应快:1只鸡是两条腿;1只兔子是四条腿。那么:

1只鸡和5只兔子一共有几条腿?(22条腿)

2只鸡和4只兔子一共有几条腿?(20条腿)有什么简便算法吗?

3只鸡和3只兔子一共有几条腿?(18条腿)

4只鸡和2只兔子一共有几条腿?(16条腿)谁知道老师接下去会问什么问题?

5只鸡和1只兔子一共有几条腿?你怎么知道老师会问这个问题?

说说你是根据什么提出这个问题的?看看你能发现什么?

发现:

①鸡的只数逐渐增加,而兔的只数不断减少;不管怎样增加和减少,它们的总头数都是6个;(板书:6)

②鸡的只数在减少1只的同时,兔的只数就增加1只;

③随着鸡的只数减少,兔的只数增加,它们的腿数依次减少2条,为什么会这样呢?

你们的发现太有价值了,那么根据你们的发现,不用计算能不能推出5只鸡和1只兔子一共有几条腿?(14条腿)根据什么呢?谁来说说?

现在我们来看这个完整的表格:像这样列出表格逐一举出问题的所有情况,这种方法在数学上我们称为列举法。

鸡兔同笼赛课全国一等奖教案

“鸡兔同笼”问题是这样叙述的:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?”意思就是:笼子里有若干只鸡和兔,从上面数,有35个头,从下面数,有94只脚,问鸡和兔各有多少只?

解此题的方法很多,比较适合小学生理解的方法是“抬腿法”也称“砍腿法”:

下面就用这种方法来解析一下这道题:

前提:假设这些鸡兔都训练有素,能按照我的口令行动。

1、我首先命令每只鸡、兔抬起一条腿,这样鸡还有一条腿着地,兔还有三条腿着地,现在总的着地的腿数=94-35=59;

2、我再次命令每只鸡、兔再抬起一条腿,这样鸡就一屁股坐地下了,兔还有二条腿着地,现在总的着地的腿数=59-35=24;这24条腿都是兔子的。

3、现在命令兔子把抬起的腿全部着地,现在有腿24X2=48;

4、兔子的数量=48÷4=12(只);鸡的数量=35-12=23(只)

建议:讲课的时候不断提问,比如:1、我首先命令每只鸡、兔抬起一条腿,哪位同学能告诉我这样鸡还有多少条腿着地?兔还有多少条腿着地呢?。等等。在教的时候等于在讲故事,故事讲完了题也教完了,很容易被学生理解和接受。

关于这道题的解法这里有很详细的解答,可以参考。网页链接

鸡兔同笼怎么引入比较好

你是几年级的啊,如果小学的用下面的公式,初中用方程鸡兔同笼问题五种基本公式和例题讲解

【鸡兔问题公式】

(1)已知总头数和总脚数,求鸡、兔各多少:

(总脚数-每只鸡的脚数×总头数)÷(每只兔的脚数-每只鸡的脚数)=兔数;

总头数-兔数=鸡数。

或者是(每只兔脚数×总头数-总脚数)÷(每只兔脚数-每只鸡脚数)=鸡数;

总头数-鸡数=兔数。

例如,“有鸡、兔共36只,它们共有脚100只,鸡、兔各是多少只?”

解一(100-2×36)÷(4-2)=14(只)………兔;

36-14=22(只)……………………………鸡。

解二(4×36-100)÷(4-2)=22(只)………鸡;

36-22=14(只)…………………………兔。

(答略)

(2)已知总头数和鸡兔脚数的差数,当鸡的总脚数比兔的总脚数多时,可用公式

(每只鸡脚数×总头数-脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;

总头数-兔数=鸡数

或(每只兔脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只免的脚数)=鸡数;

总头数-鸡数=兔数。(例略)

(3)已知总数与鸡兔脚数的差数,当兔的总脚数比鸡的总脚数多时,可用公式。

(每只鸡的脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;

总头数-兔数=鸡数。

以上就是小学数学鸡兔同笼教案的全部内容,1、鸡兔同笼,有20个头,56条腿, 鸡、兔各有多少只?从鸡兔同笼问题中取得数学学习的方法,这里的鸡兔不仅仅代表鸡和兔,运用所学的方法可以解决生活中类似的问题。2、停车场里停了三轮车和小汽车共11辆。

猜你喜欢