当前位置: 首页 > 所有学科 > 数学

初中一年级数学公式大全

  • 数学
  • 2024-07-08

初中一年级数学公式大全?那么,初中一年级数学公式大全?一起来了解一下吧。

初一数学公式大全1 过两点有且只有一条直线 2 两点之间线段最短 3 同角或等角的补角相等 4 同角或等角的余角相等 5 过一点有且只有一条直线和已知直线垂直 6 直线外一点与直线上各点连接的所有线段中,垂线段最短 7 平行公理 经过直线外一点,有且只有一条直线与这条直线平行 8 如果两条直线都和第三条直线平行,这两条直线也互相平行 9 同位角相等,两直线平行 10 内错角相等,两直线平行 11 同旁内角互补,两直线平行 12两直线平行,同位角相等 13 两直线平行,内错角相等 14 两直线平行,同旁内角互补 15 定理 三角形两边的和大于第三边 16 推论 三角形两边的差小于第三边 17 三角形内角和定理 三角形三个内角的和等于180° 18 推论1 直角三角形的两个锐角互余 19 推论2 三角形的一个外角等于和它不相邻的两个内角的和 20 推论3 三角形的一个外角大于任何一个和它不相邻的内角 21 全等三角形的对应边、对应角相等 22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等 23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等 24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等 25 边边边公理(SSS) 有三边对应相等的两个三角形全等 26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等 27 定理1 在角的平分线上的点到这个角的两边的距离相等 28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上 29 角的平分线是到角的两边距离相等的所有点的集合 30 等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角) 31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边 32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合 33 推论3 等边三角形的各角都相等,并且每一个角都等于60° 34 等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边) 35 推论1 三个角都相等的三角形是等边三角形 36 推论 2 有一个角等于60°的等腰三角形是等边三角形 37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半 38 直角三角形斜边上的中线等于斜边上的一半 39 定理 线段垂直平分线上的点和这条线段两个端点的距离相等 40 逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上 41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合 42 定理1 关于某条直线对称的两个图形是全等形 43 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线 44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上 45逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称

死记是没用的。 我妹读初一,一年下来连平方差公式都还要翻书,就是因为对数学不感兴趣,上课不怎么听,做题时看下公式,做完又忘了。我认为记公式得靠实践。就是说在做题时自然而然印在心里。 每学到一个公式,先在心里记一遍。做老师布置的作业时,尽量不要去翻书。若需要翻书很多次,那么你需要给自己施加点压力,买本课外的练习加强记忆。对于初中的练习,我觉得孟建平系列很好。我初中时就用,我们数学老师也很推荐。现在我妹也买了一本,我看过里面的题目,针对性较强,每一个知识点都有分类巩固。而且,它的程度由基本到加强,无论是中下水平还是高水平的学生都能受益。记住学数学最好能对其感兴趣,而不是为完成学业才学习。至于培养兴趣,我认为解难题是个好方法。即使不会,看到答案解析,那种巧妙的思路也非常令人着迷。呵呵,就说到这里。用心学!加油!

这是石头老师精心整理的一份小学一年级到六年级数学常用数学公式,感兴趣的老师,学生或者家长可以看一下。

第一部分: 概念
1,加法交换律:两数相加交换加数的位置,和不变.
2,加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变.
3,乘法交换律:两数相乘,交换因数的位置,积不变.
4,乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变.
5,乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变.
如:(2+4)×5=2×5+4×5
6,除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变. O除以任何不是O的数都得O.
简便乘法:被乘数,乘数末尾有O的乘法,可以先把O前面的相乘,零不参加运算,有几个零都落下,添在积的末尾.
7,什么叫等式 等号左边的数值与等号右边的数值相等的式子叫做等式.
等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立.
8,什么叫方程式 答:含有未知数的等式叫方程式.
9, 什么叫一元一次方程式 答:含有一个未知数,并且未知数的次 数是一次的等式叫做一元一次方程式.
学会一元一次方程式的例法及计算.即例出代有χ的算式并计算.
10,分数:把单位"1"平均分成若干份,表示这样的一份或几分的数,叫做分数.
11,分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变.异分母的分数相加减,先通分,然后再加减.
12,分数大小的比较:同分母的分数相比较,分子大的大,分子小的小.
异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小.
13,分数乘整数,用分数的分子和整数相乘的积作分子,分母不变.
14,分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母.
15,分数除以整数(0除外),等于分数乘以这个整数的倒数.
16,真分数:分子比分母小的分数叫做真分数.
17,假分数:分子比分母大或者分子和分母相等的分数叫做假分数.假分数大于或等于1.
18,带分数:把假分数写成整数和真分数的形式,叫做带分数.
19,分数的基本性质:分数的分子和分母同时乘以或除以同一个数
(0除外),分数的大小不变.
20,一个数除以分数,等于这个数乘以分数的倒数.
21,甲数除以乙数(0除外),等于甲数乘以乙数的倒数.
分数的加,减法则:同分母的分数相加减,只把分子相加减,分母不变.异分母的分数相加减,先通分,然后再加减.
分数的乘法则:用分子的积做分子,用分母的积做分母.
22,什么叫比:两个数相除就叫做两个数的比.如:2÷5或3:6或1/3
比的前项和后项同时乘以或除以一个相同的数(0除外),比值不变.
23,什么叫比例:表示两个比相等的式子叫做比例.如3:6=9:18
24,比例的基本性质:在比例里,两外项之积等于两内项之积.
25,解比例:求比例中的未知项,叫做解比例.如3:χ=9:18
26,正比例:两种相关联的量,一种量变化,另一种量也随着化,如果这两种量中相对应的的比值(也就是商k)一定,这两种量就叫做成正比例的量,它们的关系就叫做正比例关系.如:y/x=k( k一定)或kx=y
27,反比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系就叫做反比例关系. 如:x×y = k( k一定)或k / x = y
28,百分数:表示一个数是另一个数的百分之几的数,叫做百分数.百分数也叫做百分率或百分比.
29,把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号.其实,把小数化成百分数,只要把这个小数乘以100%就行了.
30,把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位.
31,把分数化成百分数,通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数.其实,把分数化成百分数,要先把分数化成小数后,再乘以100%就行了.
32,把百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数.
33,要学会把小数化成分数和把分数化成小数的化发.
34,最大公约数:几个数都能被同一个数一次性整除,这个数就叫做这几个数的最大公约数.(或几个数公有的约数,叫做这几个数的公约数.其中最大的一个,叫做最大公约数.)
35,互质数: 公约数只有1的两个数,叫做互质数.
36,最小公倍数:几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个叫做这几个数的最小公倍数.
37,通分:把异分母分数的分别化成和原来分数相等的同分母的分数,叫做通分.(通分用最小公倍数)
38,约分:把一个分数化成同它相等,但分子,分母都比较小的分数,叫做约分.(约分用最大公约数)
39,最简分数:分子,分母是互质数的分数,叫做最简分数.
40,分数计算到最后,得数必须化成最简分数.
41,个位上是0,2,4,6,8的数,都能被2整除,即能用2进行
42,约分.个位上是0或者5的数,都能被5整除,即能用5进行约分.在约分时应注意利用.
43,偶数和奇数:能被2整除的数叫做偶数.不能被2整除的数叫做奇数.
44,质数(素数):一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数).
45,合数:一个数,如果除了1和它本身还有别的约数,这样的数叫做合数.1不是质数,也不是合数.
46,利息=本金×利率×时间(时间一般以年或月为单位,应与利率的单位相对应)
47,利率:利息与本金的比值叫做利率.一年的利息与本金的比值叫做年利率.一月的利息与本金的比值叫做月利率.
48,自然数:用来表示物体个数的整数,叫做自然数.0也是自然数.
49,循环小数:一个小数,从小数部分的某一位起,一个数字或几个数字依次不断的重复出现,这样的小数叫做循环小数.如3. 141414
50,不循环小数:一个小数,从小数部分起,没有一个数字或几个数字依次不断的重复出现,这样的小数叫做不循环小数.如圆周率:3. 141592654
51,无限不循环小数:一个小数,从小数部分起到无限位数,没有一个数字或几个数字依次不断的重复出现,这样的小数叫做无限不循环小数.如3. 141592654……
52,什么叫代数 代数就是用字母代替数.
53,什么叫代数式 用字母表示的式子叫做代数式.如:3x =ab+c
----------------------------------------------------------------------------------------------------------------------
第二部分:定义定理
一,算术方面
1.加法交换律:两数相加交换加数的位置,和不变.
2.加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第
三个数相加,和不变.
3.乘法交换律:两数相乘,交换因数的位置,积不变.
4.乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变.
5.乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变.如:(2+4)×5=2×5+4×5.
6.除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变.0除以任何不是0的数都得0.
7.等式:等号左边的数值与等号右边的数值相等的式子叫做等式.
等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立.
8.方程式:含有未知数的等式叫方程式.
9.一元一次方程式:含有一个未知数,并且未知数的次 数是一次的等式叫做一元一次方程式.
学会一元一次方程式的例法及计算.即例出代有χ的算式并计算.
10.分数:把单位"1"平均分成若干份,表示这样的一份或几分的数,叫做分数.
11.分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变.异分母的分数相加减,先通分,然后再加减.
12.分数大小的比较:同分母的分数相比较,分子大的大,分子小的小.
异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小.
13.分数乘整数,用分数的分子和整数相乘的积作分子,分母不变.
14.分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母.
15.分数除以整数(0除外),等于分数乘以这个整数的倒数.
16.真分数:分子比分母小的分数叫做真分数.
17.假分数:分子比分母大或者分子和分母相等的分数叫做假分数.假分数大于或等于1.
18.带分数:把假分数写成整数和真分数的形式,叫做带分数.
19.分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小不变.
20.一个数除以分数,等于这个数乘以分数的倒数.
21.甲数除以乙数(0除外),等于甲数乘以乙数的倒数.
----------------------------------------------------------------------------------------------------------------------
第三部分:几何体
1.正方形
正方形的周长=边长×4 公式:C=4a
正方形的面积=边长×边长 公式:S=a×a
正方体的体积=边长×边长×边长 公式:V=a×a×a
2.正方形
长方形的周长=(长+宽)×2 公式:C=(a+b)×2
长方形的面积=长×宽 公式:S=a×b
长方体的体积=长×宽×高 公式:V=a×b×h
3.三角形
三角形的面积=底×高÷2. 公式:S= a×h÷2
4.平行四边形
平行四边形的面积=底×高 公式:S= a×h
5.梯形
梯形的面积=(上底+下底)×高÷2 公式:S=(a+b)h÷2
6.圆
直径=半径×2 公式:d=2r
半径=直径÷2 公式:r= d÷2
圆的周长=圆周率×直径 公式:c=πd =2πr
圆的面积=半径×半径×π 公式:S=πrr
7.圆柱
圆柱的侧面积=底面的周长×高. 公式:S=ch=πdh=2πrh
圆柱的表面积=底面的周长×高+两头的圆的面积. 公式:S=ch+2s=ch+2πr2
圆柱的总体积=底面积×高. 公式:V=Sh
8.圆锥
圆锥的总体积=底面积×高×1/3 公式:V=1/3Sh
三角形内角和=180度.
平行线:同一平面内不相交的两条直线叫做平行线
垂直:两条直线相交成直角,像这样的两条直线,
我们就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,这两条直线的交点叫做垂足.
----------------------------------------------------------------------------------------------------------------------
第四部分:计算公式
数量关系式:
1, 每份数×份数=总数 总数÷每份数=份数 总数÷份数=每份数
2, 1倍数×倍数=几倍数 几倍数÷1倍数=倍数 几倍数÷倍数=1倍数
3, 速度×时间=路程 路程÷速度=时间 路程÷时间=速度
4, 单价×数量=总价 总价÷单价=数量 总价÷数量=单价
5, 工作效率×工作时间=工作总量 工作总量÷工作效率=工作时间 工作总量÷工作时间=工作效率
6, 加数+加数=和 和-一个加数=另一个加数
7, 被减数-减数=差 被减数-差=减数 差+减数=被减数
8, 因数×因数=积 积÷一个因数=另一个因数
9, 被除数÷除数=商 被除数÷商=除数 商×除数=被除数
******************************************************
和差问题的公式
(和+差)÷2=大数
(和-差)÷2=小数
和倍问题
和÷(倍数-1)=小数
小数×倍数=大数
(或者 和-小数=大数)
差倍问题
差÷(倍数-1)=小数
小数×倍数=大数
(或 小数+差=大数)
******************************************************
植树问题:
1 非封闭线路上的植树问题主要可分为以下三种情形:
⑴如果在非封闭线路的两端都要植树,那么:
株数=段数+1=全长÷株距-1
全长=株距×(株数-1)
株距=全长÷(株数-1)
⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
⑶如果在非封闭线路的两端都不要植树,那么:
株数=段数-1=全长÷株距-1
全长=株距×(株数+1)
株距=全长÷(株数+1)
2 封闭线路上的植树问题的数量关系如下
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
******************************************************
盈亏问题
(盈+亏)÷两次分配量之差=参加分配的份数
(大盈-小盈)÷两次分配量之差=参加分配的份数
(大亏-小亏)÷两次分配量之差=参加分配的份数
******************************************************
相遇问题
相遇路程=速度和×相遇时间
相遇时间=相遇路程÷速度和
速度和=相遇路程÷相遇时间
******************************************************
追及问题
追及距离=速度差×追及时间
追及时间=追及距离÷速度差
速度差=追及距离÷追及时间
******************************************************
流水问题
顺流速度=静水速度+水流速度
逆流速度=静水速度-水流速度
静水速度=(顺流速度+逆流速度)÷2
水流速度=(顺流速度-逆流速度)÷2
******************************************************
浓度问题:
溶质的重量+溶剂的重量=溶液的重量
溶质的重量÷溶液的重量×100%=浓度
溶液的重量×浓度=溶质的重量
溶质的重量÷浓度=溶液的重量
******************************************************
利润与折扣问题:
利润=售出价-成本
利润率=利润÷成本×100%=(售出价÷成本-1)×100%
涨跌金额=本金×涨跌百分比
折扣=实际售价÷原售价×100%(折扣<1)
利息=本金×利率×时间
税后利息=本金×利率×时间×(1-20%)
******************************************************
面积,体积换算
(1)1公里=1千米 1千米=1000米 1米=10分米 1分米=10厘米 1厘米=10毫米
(2)1平方米=100平方分米 1平方分米=100平方厘米 1平方厘米=100平方毫米
(3)1立方米=1000立方分米 1立方分米=1000立方厘米 1立方厘米=1000立方毫米
(4)1公顷=10000平方米 1亩=666.666平方米
(5)1升=1立方分米=1000毫升 1毫升=1立方厘米
******************************************************
重量换算:
1吨=1000 千克
1千克=1000克
1千克=1公斤
******************************************************
人民币单位换算
1元=10角
1角=10分
1元=100分
******************************************************
时间单位换算:
1世纪=100年 1年=12月
大月(31天)有:1\3\5\7\8\10\12月
小月(30天)的有:4\6\9\11月
平年2月28天, 闰年2月29天
平年全年365天, 闰年全年366天
1日=24小时 1时=60分
1分=60秒 1时=3600秒

1 过两点有且只有一条直线 2 两点之间线段最短 3 同角或等角的补角相等 4 同角或等角的余角相等 5 过一点有且只有一条直线和已知直线垂直 6 直线外一点与直线上各点连接的所有线段中,垂线段最短 7 平行公理 经过直线外一点,有且只有一条直线与这条直线平行 8 如果两条直线都和第三条直线平行,这两条直线也互相平行 9 同位角相等,两直线平行 10 内错角相等,两直线平行 11 同旁内角互补,两直线平行 12两直线平行,同位角相等 13 两直线平行,内错角相等 14 两直线平行,同旁内角互补 15 定理 三角形两边的和大于第三边 16 推论 三角形两边的差小于第三边 17 三角形内角和定理 三角形三个内角的和等于180° 18 推论1 直角三角形的两个锐角互余 19 推论2 三角形的一个外角等于和它不相邻的两个内角的和 20 推论3 三角形的一个外角大于任何一个和它不相邻的内角 21 全等三角形的对应边、对应角相等 22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等 23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等 24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等 25 边边边公理(SSS) 有三边对应相等的两个三角形全等 26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等 27 定理1 在角的平分线上的点到这个角的两边的距离相等 28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上 29 角的平分线是到角的两边距离相等的所有点的集合 30 等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角) 31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边 32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合 33 推论3 等边三角形的各角都相等,并且每一个角都等于60° 34 等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边) 35 推论1 三个角都相等的三角形是等边三角形 36 推论 2 有一个角等于60°的等腰三角形是等边三角形 37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半 38 直角三角形斜边上的中线等于斜边上的一半 39 定理 线段垂直平分线上的点和这条线段两个端点的距离相等  40 逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上 41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合 42 定理1 关于某条直线对称的两个图形是全等形 43 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线 44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上 45逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称

一:整式的运算


公式:


1单项式的次数:一个单项式中,所有字母的指数和叫做这个单项式的次数。


2一个多项式中,次数最高的项的次数,叫做这个多项式的次数。


3整式的加减法,实质就是将整式中的同类项合并,如果有括号应先去括号,再合并同类项。


4同底数幂相除,底数不变,指数相减。


二:平行线与相交线


公式:


余角和补角定律:1如果两个角的和是直角,称这两个角互为余角。如果两个角的和是直角,称这两个角互为补角。


三:生活中的数据


1有效数字:对于一个近似数,从左边起第一个不是零的数起,到精确到的数位止,所有的数字叫这个数的有效数字。


2平行线像这样的,不会相交的两条直线,就是互相平行的两条直线,简称平行线。4四边形:两组对边平行。


3统计图:1条形统计图:条形统计图是用一个单位长度表示一定的数量,根据数量的多少画成长短不同的直条,然后把这些纸条按一定的顺序排列起来。从条形统计图中很容易看出各种数量的多少。


条形统计图分为:单式条形统计图和复式条形统计图,前者只表示1个项目的数据,后者可以同时表示多个项目的数据。


2折线统计图:折线统计图是用一个单位长度表示一定的数量,根据数量的多少描出各点,然后把各点用线段顺次连接起来,以折线的上升或下降来表示统计数量增减变化。折线统计图不但可以表示出数量的多少,而且还能够清楚的表示出数量增减变化的情况。折线统计图分单式或复式


3扇形统计图:扇形统计图是用整个圆表示总数用圆内各个扇形


的大小表示各部分数量占总数的百分数。通过扇形统计图可以很清楚的表示出各部分数量同总数之间的关系。用整个圆的面积表示总数(单位1),用圆的扇形面积表示各部分占总数的百分数.作用:能清楚地反映书各部分数同总数之间的关系.扇形面积与其对应的圆心角的关系是:扇形面积越大,圆心角的度数越大。扇形面积越小,圆心角的度数越小。扇形所对圆心角的度数与百分比的关系是:圆心角的度数=百分比*360度扇形统计图还可以画成圆柱形的。


四:三角形


三角形一公有三种,锐角三角形:并不是有一个锐角的三角形,而是三个角都为锐角,比如等边三角形也是锐角三角形。直角三角形:有一个角为90度的三角形,就是直角三角形。钝角三角形:有一个角是钝角的三角形叫钝角三角形。任意一个三角形,最多有三个锐角;最多有一个钝角;最多有一个直角。


一个三角形有三条中线,并且都在三角形的内部,相交于一点。三角形的中线是一条线段。

三角形的面积=底×高÷2。 公式 S= a×h÷2
正方形的面积=边长×边长 公式 S= a×a
长方形的面积=长×宽 公式 S= a×b
平行四边形的面积=底×高 公式 S= a×h
梯形的面积=(上底+下底)×高÷2 公式 S=(a+b)h÷2
内角和:三角形的内角和=180度。
长方体的体积=长×宽×高 公式:V=abh
长方体(或正方体)的体积=底面积×高 公式:V=abh
正方体的体积=棱长×棱长×棱长 公式:V=aaa
圆的周长=直径×π 公式:L=πd=2πr
圆的面积=半径×半径×π 公式:S=πr2
圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。公式:S=ch=πdh=2πrh
圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。 公式:S=ch+2s=ch+2πr2
圆柱的体积:圆柱的体积等于底面积乘高。公式:V=Sh
圆锥的体积=1/3底面×积高。公式:V=1/3Sh
分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。
分数的乘法则:用分子的积做分子,用分母的积做分母。
分数的除法则:除以一个数等于乘以这个数的倒数。
读懂理解会应用以下定义定理性质公式
一、算术方面
1、加法交换律:两数相加交换加数的位置,和不变。
2、加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。
3、乘法交换律:两数相乘,交换因数的位置,积不变。
4、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。
5、乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。
如:(2+4)×5=2×5+4×5
6、除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。 O除以任何不是O的数都得O。
简便乘法:被乘数、乘数末尾有O的乘法,可以先把O前面的相乘,零不参加运算,有几个零都落下,添在积的末尾。
7、么叫等式?等号左边的数值与等号右边的数值相等的式子
叫做等式。
等式的基本性质:等式两边同时乘以(或除以)一个相同的数,
等式仍然成立。
8、什么叫方程式?答:含有未知数的等式叫方程式。
9、 什么叫一元一次方程式?答:含有一个未知数,并且未知数的次 数是一次的等式叫做一元一次方程式。
学会一元一次方程式的例法及计算。即例出代有χ的算式并计算。
10、分数:把单位“1”平均分成若干份,表示这样的一份或几分的数,叫做分数。
11、分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。
12、分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。
13、分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。
14、分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。
15、分数除以整数(0除外),等于分数乘以这个整数的倒数。
16、真分数:分子比分母小的分数叫做真分数。
17、假分数:分子比分母大或者分子和分母相等的分数叫做假分数。假分数大于或等于1。
18、带分数:把假分数写成整数和真分数的形式,叫做带分数。
19、分数的基本性质:分数的分子和分母同时乘以或除以同一个数
(0除外),分数的大小不变。
20、一个数除以分数,等于这个数乘 ...
追问追答
0

以上就是初中一年级数学公式大全的全部内容。

猜你喜欢