七年级上册数学期末测试题?四、解答题:(本大题5个小题,每小题6分,共30分)29.某校七年级学生举行元旦游园活动,设有语文天地,趣味数学,EnglishWorld三大项目,趣味数学含七巧板拼图,速算,魔方还原,脑筋急转弯以及其他小项目,那么,七年级上册数学期末测试题?一起来了解一下吧。
辛劳的付出必有丰厚回报,寒窗苦读为前途,望子成龙父母情。祝你七年级数学期末考试取得好成绩,期待你的成功!我整理了关于七年级数学上册期末试题人教版,希望对大家有帮助!
七年级数学上册期末试题
一、选择题:每小题3分,共20分
1.﹣8的相反数是()
A.﹣8 B.8 C. D.
2.下列计算结果,错误的是()
A.(﹣3)×(﹣4)×(﹣ )=﹣3 B.(﹣ )×(﹣8)×5=﹣8 C.(﹣6)×(﹣2)×(﹣1)=﹣12 D.(﹣3)×(﹣1)×(+7)=21
3.1500万(即15000000)这个数用科学记数法可表示为()
A.1.5×105 B.1.5×106 C.1.5×107 D.1.8×108
4.若多项式2x2+3y+3的值为8,则多项式6x2+9y+8的值为()
A.1 B.11 C.15 D.23
5.下列方程中是一元一次方程的是()
A.x+3=3﹣x B.x+3=y+2 C. =1 D.x2﹣1=0
6.用一副三角板不可以拼出的角是()
A.105° B.75° C.85° D.15°
7.如果线段AB=6cm,BC=4cm,且线段A、B、C在同一直线上,那么A、C间的距离是()
A.10cm B.2cm C.10cm或者2cm D.无法确定
8.钟表上的时间为晚上8点,这时时针和分针之间的夹角(小于平角)的度数是()
A.120° B.105° C.100° D.90°
9.商场将某种商品按标价的八折出售,仍可获利90元,若这种商品的标价为300元,则该商品的进价为()
A.330元 B.210元 C.180元 D.150元
10.指出图中几何体截面的形状()
A. B. C. D.
二、填空题:每小题2分,共14分
11.化简:﹣[﹣(+5)]=.
12.已知|x+1|+(x﹣y+3)2=0,那么(x+y)2的值是.
13.小虎在写作业时不小心将墨水滴在数轴上,根据图中的数值,判断墨迹盖住的整数之和为.
14.同类项﹣ a3b,3a3b,﹣ a3b的和是.
15.若“★”是新规定的某种运算符号,设a★b=ab+a﹣b,则2★n=﹣8,则n=.
16.如图直线AB、CD相交于点E,EF是∠BED的角平分线,已知∠DEF=70°,则∠AED的度数是.
17.观察下列单项式的规律:a、﹣2a2、3a3、﹣4a4、…第2016个单项式为.
三、解答题
18.计算:
(1)|(﹣7)+(﹣2)|+(﹣3)
(2)42+3×(﹣1)3+(﹣2)÷(﹣ )2.
19.在数轴上表示下列各数,并用“<”号把它们连接起来.
1.5,0,﹣3,﹣(﹣5),﹣|﹣4|
20.解方程:
(1) x﹣1=2
(2) = .
21.先化简,再求值:2(x3﹣2y2)﹣(x﹣2y)﹣(x﹣3y+2x3),其中x=﹣3,y=﹣2.
22.如图,O为直线AB上一点,∠AOC=50°,OD平分∠AOC,∠DOE=90°.
(1)求∠BOD的度数;
(2)试判断∠BOE和∠COE有怎样的数量关系,你的理由.
23.如图,已知线段AB和CD的公共部分BD= AB= CD,线段AB、CD的中点E、F之间距离是10cm,求AB,CD的长.
24.某明星演唱会组委会公布的门票价格是:一等席600元;二等席400元;三等席250元.某服装公司在促销活动中组织获前三等奖的36名顾客去观看比赛,计划买两种门票10050元,你能设计几种购买价方案供该公司选择?并说明理由.
七年级数学上册期末试题人教版参考答案
一、选择题:每小题3分,共20分
1.﹣8的相反数是()
A.﹣8 B.8 C. D.
【考点】相反数.
【分析】直接根据相反数的定义进行解答即可.
【解答】解:由相反数的定义可知,﹣8的相反数是﹣(﹣8)=8.
故选B.
【点评】本题考查的是相反数的定义,即只有符号不同的两个数叫做互为相反数.
2.下列计算结果,错误的是()
A.(﹣3)×(﹣4)×(﹣ )=﹣3 B.(﹣ )×(﹣8)×5=﹣8 C.(﹣6)×(﹣2)×(﹣1)=﹣12 D.(﹣3)×(﹣1)×(+7)=21
【考点】有理数的乘法.
【分析】根据结果的符号即可作出判断.
【解答】解:A、(﹣3)×(﹣4)×(﹣ )=﹣(3×4× )=﹣3,正确;
B、(﹣ )×(﹣8)×5中负因数的分数为偶数,积为正数,故B选项错误;
C、(﹣6)×(﹣2)×(﹣1)=﹣(6×2×1)=﹣12,正确;
D、(﹣3)×(﹣1)×(+7)=3×1×7=21,正确.
故其中错误的是B.
故选:B.
【点评】本题主要考查的是有理数的乘法,掌握有理数的乘法法则是解题的关键.
3.1500万(即15000000)这个数用科学记数法可表示为()
A.1.5×105 B.1.5×106 C.1.5×107 D.1.8×108
【考点】科学记数法—表示较大的数.
【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【解答】解:15000000=1.5×107,
故选 C.
【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
4.若多项式2x2+3y+3的值为8,则多项式6x2+9y+8的值为()
A.1 B.11 C.15 D.23
【考点】代数式求值.
【专题】计算题;实数.
【分析】由已知多项式的值求出2x2+3y的值,原式变形后代入计算即可求出值.
【解答】解:∵2x2+3y+3=8,
∴2x2+3y=5,
则原式=3(2x2+3y)+8=15+8=23,
故选D
【点评】此题考查了代数式求值,利用了整体代换的方法,熟练掌握运算法则是解本题的关键.
5.下列方程中是一元一次方程的是()
A.x+3=3﹣x B.x+3=y+2 C. =1 D.x2﹣1=0
【考点】一元一次方程的定义.
【分析】只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程.它的一般形式是ax+b=0(a,b是常数且a≠0).
【解答】解:A、x+3=3﹣x是一元一次方程,故A正确;
B、x+3=y+2是二元一次方程,故B错误;
C、 =1是分式方程,故C错误;
D、x2﹣1=0是一元二次方程,故D错误;
故选:A.
【点评】本题主要考查了一元一次方程的一般形式,只含有一个未知数,且未知数的指数是1,一次项系数不是0,这是这类题目考查的重点.
6.用一副三角板不可以拼出的角是()
A.105° B.75° C.85° D.15°
【考点】角的计算.
【专题】计算题.
【分析】一副三角板各角的度数是30度,60度,45度,90度,因而把他们相加减就可以拼出的度数,据此得出选项.
【解答】解:已知一副三角板各角的度数是30度,60度,45度,90度,
可以拼出的度数就是用30度,60度,45度,90度相加减,
45°+60°=105°,
30°+45°=75°,
45°﹣30°=15°,
显然得不到85°.
故选:C.
【点评】此题考查的知识点是角的计算,关键明确用一副三角板可以拼出度数,就是求两个三角板的度数的和或差.
7.如果线段AB=6cm,BC=4cm,且线段A、B、C在同一直线上,那么A、C间的距离是()
A.10cm B.2cm C.10cm或者2cm D.无法确定
【考点】两点间的距离.
【专题】分类讨论.
【分析】讨论:当点C在线段AB的延长线上时,AC=AB+BC;当点C在线段AB的上时,AC=AB﹣BC,再把AB=6cm,BC=4cm代入计算可求得AC的长,即得到A、C间的距离.
【解答】解:当点C在线段AB的延长线上时,如图,
AC=AB+BC=6+4=10(cm),
即A、C间的距离为10cm;
当点C在线段AB的上时,如图,
AC=AB﹣BC=6﹣4=2(cm),
即A、C间的距离为2cm.
故A、C间的距离是10cm或者2cm.
故选C.
【点评】本题考查了两点间的距离:两点间的线段的长叫两点间的距离.也考查了分类讨论思想.
8.钟表上的时间为晚上8点,这时时针和分针之间的夹角(小于平角)的度数是()
A.120° B.105° C.100° D.90°
【考点】钟面角.
【专题】计算题.
【分析】由于钟表上的时间为晚上8点,即时针指向8,分针指向12,这时时针和分针之间有4大格,根据钟面被分成12大格,每大格为30°即可得到它们的夹角.
【解答】解:∵钟表上的时间为晚上8点,即时针指向8,分针指向12,
∴这时时针和分针之间的夹角(小于平角)的度数=(12﹣8)×30°=120°.
故选A.
【点评】本题考查了钟面角的问题:钟面被分成12大格,每大格为30°.
9.商场将某种商品按标价的八折出售,仍可获利90元,若这种商品的标价为300元,则该商品的进价为()
A.330元 B.210元 C.180元 D.150元
【考点】一元一次方程的应用.
【分析】已知八折出售可获利90元,根据:进价=标价×8折﹣获利,可列方程求得该商品的进价.
【解答】解:设每件的进价为x元,由题意得:
300×80%﹣90=x
解得x=150.
故选D.
【点评】本题考查了一元一次方程的应用,属于基础题,关键是仔细审题,根据等量关系:进价=标价×80%﹣获利,利用方程思想解答.
10.指出图中几何体截面的形状()
A. B. C. D.
【考点】截一个几何体.
【分析】用平面取截一个圆锥体,横着截时截面是椭圆或圆(截面与上下底平行).
【解答】解:当截面平行于圆锥底面截取圆锥时得到截面图形是圆.
故选B.
【点评】本题考查几何体的截面,关键要理解面与面相交得到线
二、填空题:每小题2分,共14分
11.化简:﹣[﹣(+5)]=5.
【考点】相反数.
【分析】根据多重符号化简的法则化简.
【解答】解:﹣[﹣(+5)]=+5=5.
【点评】本题考查多重符号的化简,一般地,式子中含有奇数个“﹣”时,结果为负;式子中含有偶数个“﹣”时,结果为正.
12.已知|x+1|+(x﹣y+3)2=0,那么(x+y)2的值是1.
【考点】非负数的性质:偶次方;非负数的性质:绝对值.
【分析】根据非负数的性质可求出x、y的值,再将它们代入(x+y)2中求解即可.
【解答】解:∵|x+1|+(x﹣y+3)2=0,
∴x+1=0,x﹣y+3=0;
x=﹣1,y=2;
则(x+y)2=(﹣1+2)2=1.
故答案为:1.
【点评】本题考查了非负数的性质:有限个非负数的和为零,那么每一个加数也必为零.
13.小虎在写作业时不小心将墨水滴在数轴上,根据图中的数值,判断墨迹盖住的整数之和为﹣14.
【考点】数轴.
【分析】根据题意和数轴可以得到被墨迹盖住的部分之间的整数,从而可求得墨迹盖住的整数之和.
【解答】解:根据题意和数轴可得,
被墨迹盖住的整数之和是:(﹣6)+(﹣5)+(﹣4)+(﹣3)+(﹣2)+1+2+3=﹣14,
故答案为:﹣14.
【点评】本题考查数轴,解题的关键是明确题意,利用数形结合的思想写出被遮住部分之间的所有整数.
14.同类项﹣ a3b,3a3b,﹣ a3b的和是 a3b.
【考点】合并同类项.
【分析】根据合并同类项系数相加字母及指数不变,可得答案.
【解答】解:﹣ a3b+3a3b+﹣ a3b= a3b,
﹣ a3b,3a3b,﹣ a3b的和是 a3b,
故答案为: a3b.
【点评】本题考查了合并同类项,合并同类项系数相加字母及指数不变是解题关键.
15.若“★”是新规定的某种运算符号,设a★b=ab+a﹣b,则2★n=﹣8,则n=﹣10.
【考点】解一元一次方程.
【专题】计算题;新定义;一次方程(组)及应用.
【分析】已知等式利用题中的新定义化简,求出解即可得到n的值.
【解答】解:利用题中的新定义化简得:2n+2﹣n=﹣8,
移项合并得:n=﹣10,
故答案为:﹣10
【点评】此题考查了解一元一次方程,弄清题中的新定义是解本题的关键.
16.如图直线AB、CD相交于点E,EF是∠BED的角平分线,已知∠DEF=70°,则∠AED的度数是40°.
【考点】角平分线的定义.
【分析】根据角平分线的定义求出∠DEB的度数,然后根据平角等于180°列式进行计算即可求解.
【解答】解:∵EF是∠BED的角平分线,∠DEF=70°,
∴∠DEB=2∠DEF=2×70°=140°,
∴∠AED=180°﹣∠DEB=180°﹣140°=40°.
故答案为:40°.
【点评】本题考查了角平分线的定义,平角等于180°,是基础题,需熟练掌握.
17.观察下列单项式的规律:a、﹣2a2、3a3、﹣4a4、…第2016个单项式为﹣2016a2016.
【考点】单项式.
【专题】规律型.
【分析】单项式的系数是正负间隔出现,系数的绝对值等于该项字母的次数,由此规律即可解答.
【解答】解:第2016个单项式为:﹣2016a2016,
故答案为:﹣2016a2016.
【点评】本题主要考查了单项式的有关知识,在解题时要能通过观察得出规律是本题的关键.
三、解答题
18.计算:
(1)|(﹣7)+(﹣2)|+(﹣3)
(2)42+3×(﹣1)3+(﹣2)÷(﹣ )2.
【考点】有理数的混合运算.
【分析】(1)先算绝对值符号里面的,再算加减即可;
(2)先算乘方,再算乘除,最后算加减即可.
【解答】解:(1)原式=9﹣3
=6;
(2)原式=16+3×(﹣1)﹣2×9
=16﹣3﹣18
=﹣5.
【点评】本题考查的是有理数的混合运算,熟知有理数混合运算的法则是解答此题的关键.
19.在数轴上表示下列各数,并用“<”号把它们连接起来.
1.5,0,﹣3,﹣(﹣5),﹣|﹣4|
【考点】有理数大小比较;数轴.
【分析】把各数在数轴上表示出来,从左到右用“<”号连接起来即可.
【解答】解:如图所示,
,
故﹣|﹣4|<﹣3<0<1.5<﹣(﹣5).
【点评】本题考查的是有理数的大小比较,熟知数轴上右边的数总比左边的大是解答此题的关键.
20.解方程:
(1) x﹣1=2
(2) = .
【考点】解一元一次方程.
【专题】计算题;一次方程(组)及应用.
【分析】(1)方程去分母,移项合并,把x系数化为1,即可求出解;
(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.
【解答】解:(1)去分母得:x﹣2=4,
解得:x=6;
(2)去分母得:3(3y﹣1)﹣12=2(5y﹣7),
去括号得:9y﹣3﹣12=10y﹣14,
移项合并得:y=﹣1.
【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.
21.先化简,再求值:2(x3﹣2y2)﹣(x﹣2y)﹣(x﹣3y+2x3),其中x=﹣3,y=﹣2.
【考点】整式的加减—化简求值.
【分析】首先化简,进而合并同类项进而求出代数式的值.
【解答】解:2(x3﹣2y2)﹣(x﹣2y)﹣(x﹣3y+2x3)
=2x3﹣4y2﹣x+2y﹣x+3y﹣2x3,
=4y2﹣2x+5y,
∵x=﹣3,y=﹣2,
∴原式=﹣4y2﹣2x+5y=﹣4×(﹣2)2﹣2×(﹣3)+5×(﹣2)=﹣20.
【点评】此题主要考查了整式的加减运算,正确合并同类项是解题关键.
22.如图,O为直线AB上一点,∠AOC=50°,OD平分∠AOC,∠DOE=90°.
(1)求∠BOD的度数;
(2)试判断∠BOE和∠COE有怎样的数量关系,你的理由.
【考点】角的计算;角平分线的定义.
【分析】(1)根据角平分线的定义,邻补角的定义,可得答案;
(2)根据角的和差,可得答案.
【解答】解:(1)由角平分线的定义,得
∠AOD=∠COD= ∠AOC= ×50°=25°.
由邻补角的定义,得
∠BOD=180°﹣∠AOD=180°﹣25°=155°;
(2)∠BOE=∠COE,理由如下:
由角的和差,得
∠BOE=∠BOD﹣∠DOE=155°﹣90°=65°,
∠COE=∠DOE﹣∠COD=90°﹣25°=65°,
则∠BOE=∠COE.
【点评】本题考查了角的计算,利用角的和差是解题关键.
23.如图,已知线段AB和CD的公共部分BD= AB= CD,线段AB、CD的中点E、F之间距离是10cm,求AB,CD的长.
【考点】两点间的距离.
【专题】方程思想.
【分析】先设BD=xcm,由题意得AB=3xcm,CD=4xcm,AC=6xcm,再根据中点的定义,用含x的式子表示出AE和CF,再根据EF=AC﹣AE﹣CF=2.5x,且E、F之间距离是10cm,所以2.5x=10,解方程求得x的值,即可求AB,CD的长.
【解答】解:设BD=xcm,则AB=3xcm,CD=4xcm,AC=6xcm.
∵点E、点F分别为AB、CD的中点,∴AE= AB=1.5xcm,CF= CD=2xcm.
∴EF=AC﹣AE﹣CF=6x﹣1.5x﹣2x=2.5xcm.∵EF=10cm,∴2.5x=10,解得:x=4.
∴AB=12cm,CD=16cm.
【点评】本题主要考查了两点间的距离和中点的定义,注意运用数形结合思想和方程思想.
24.某明星演唱会组委会公布的门票价格是:一等席600元;二等席400元;三等席250元.某服装公司在促销活动中组织获前三等奖的36名顾客去观看比赛,计划买两种门票10050元,你能设计几种购买价方案供该公司选择?并说明理由.
【考点】一元一次方程的应用.
【分析】可分为购买一等席和二等席;一等席和三等席;二等席和三等席位三种情况,然后根据门票总数为36张,总费用为10050元,列方程求解即可.
【解答】解:①设购买一等席x张,二等席(36﹣x)张.
根据题意得:600x+400(36﹣x)=10050.
解得:x=﹣21.75(不合题意).
②设购买一等席x张,三等席(36﹣x)张.
根据题意得:600x+250(36﹣x)=10050.
解得:x=3.
∴可购买一等席3张,二等席位33张.
③设购买二等席x张,三等席(36﹣x)张.
根据题意得:400x+250(36﹣x)=10050.
解得:x=7.
∴可购买二等席7张,二等席位29张.
答;共有2中方案可供选择,方案①可购买一等席3张,二等席位33张;方案②可购买二等席7张,二等席位29张.
【点评】本题主要考查的是一元一次方程的应用,根据门票的总张数为36张,总票价为10050元分类列出方程是解题的关键.
一、精心选一选(每小题3分,共45分)
1、若a与b互为相反数,则下列式子成立的是()
A、a-b=0B、a+b=1C、a+b=0D、ab=0
2、下列说法正确的是()
A、异号两数相加,取较大的符号,并把绝对值相加
B、同号两数相减,取相同的符号,并把绝对值相减
C、符号相反的两个数相加得0
D、0加上一个数仍得这个数
3、温度由-60C下降50C是()0C
A、-1B、11C、1D、-11
4、若|m|=2,|n|=4,且m>0,n<0,则m-n=()
A、-2B、2C、6D、-6
5、据中央电视台“朝闻天下”报道,北京市目前汽车拥有量约为3100000辆,则3100000用科学计数法表示为()
A.0.31×10B.31×10C.3.1×10D.3.1×10
6、下列说法不正确的是()
A、数轴上的数,右边的数总比左边的数大
B、绝对值最小的有理数是0
C、在数轴上,右边的数的绝对值比左边的数的绝对值大
D、离原点越远的点,表示的数的绝对值越大
7、下列各组式子中不是同类项的是()
A.3x2y与-3yx2B.3x2y与-2y2xC.-2004与2005D.5xy与3yx
8、同一平面内有四点,每过两点画一条直线,则直线的条数是()
A.1条B.4条C.6条D.1条或4条或6条
9、如图所示,由A到B有①、②、③三条路线,最短的路线选①的理由是()
A.因为它直B.两点确定一条直线
C.两点间距离的定义D.两点之间,线段最短
10、下面的说法正确的是()
A、–2不是代数式,B、–a表示负数
C、的系数是3D、x+1是代数式
11、有理数a、b在数轴上的位置如图所示,则下列各式正确的是()
A.a>bB.a>-bC.a
12、上午9点30分,时钟的时针和分针成的锐角为()
A、B、C、D、
13、小明在做解方程作业时,不小心将方程中的一个常数污染了看不清楚,被污染的方程是2y-=y-●,怎么办呢?小明想了一想便翻看了书后的答案,此方程的解是y=-,很快补好了这个常数,这个常数应是()
A、1B、2C、3D、4
14、足球比赛的积分规则为胜一场得3分,平一场得1分,负一场得0分。
斗智斗勇齐亮相,得失成败走一场。祝七年级数学期末考试时超常发挥!下面是我为大家精心推荐的七年级上数学期末考试卷人教版,希望能够对您有所帮助。
七年级上数学期末考试卷
一、选择题(每题3分,共30分)
1.零上3℃记作 3℃,零下2℃可记作 ( )
A.2 B. C.2℃ D. 2℃
2.方程 的解的相反数是 ( )
A.2 B.-2 C.3 D.-3
3.近年来,中国高铁发展迅速,高铁技术不断走出国门,成为展示我国实力的新名片。预计到2016年底,中国高速铁路营运里程将达到18000公里。将18000用科学记数法表示应为 ( )
A.18×10 B.1.8×10 C.1.8×10 D.1.8×10
4.下列运算正确的是( )
A.3x2+2x3=5x5 B.2x2+3x2=5x2
C.2x2+3x2 =5x4 D.2x2+3x3=6x5
5.如果代数式x-2y+2的值是5,则2x-4y的值是( )
A.3 B.-3 C.6 D.-6
6.已知数a,b在数轴上表示的点的位置如图所示,则下列结论正确的是( )
A.a+b>0 B.a•b>0 C.|a|>|b| D.b+a>b
7.在墙壁上固定一根横放的木条,则至少需要钉子的枚数是 ( )
A.1枚 B.2枚 C.3枚 D.任意枚
8.如图,C、D是线段AB上的两点,且D是线段AC的中点,若AB=10cm,BC=4cm,则AD的长为( )
A.2cm B.3cm C.4cm D. 6cm
9.一副三角板不能拼出的角的度数是(拼接要求:既不重叠又不留空隙)( )
A. B. C. D.
10.观察下列关于x的单项式,探究其规律:2x,4x,6x,8x,10x,12x,…,按照上述规律,第2016个单项式是 ( )
A.2016x B.2016x C.4032x D.4032x
二、填空题(每题3分,共21分)
11.单项式单项式 的系数是 .
12.若 .
13.若 是同类项,则 ____________.
14.如果关于 的方程 的解是 ,则 .
15.若∠α的补角为76°28′,则∠α= .
16.已知 , 互为相反数, , 互为倒数, ,那么 的值等于________.
17.关于x的方程 是一元一次方程,则 .
三、解答题(本题共42分,每题6分)
18.计算:(1)
(2)
19.解下列方程:
(1)5(x+8)=6(2x﹣7)+5
(2)
20.先化简,再求值: 5a2-4a2+a-9a-3a2-4+4a,其中a=- 。
成功的花由汗水浇灌,艰苦的掘流出甘甜的泉,祝:七年级数学期末考试时能超水平发挥。下面是我为大家精心整理的苏教版七年级上册数学期末测试卷,仅供参考。
苏教版七年级上册数学期末测试题
一、选择题(本大题共有10小题.每小题2分,共20分)
1.下列运算正确的是()
A.﹣a2b+2a2b=a2b B.2a﹣a=2
C.3a2+2a2=5a4 D.2a+b=2ab
2.在我国南海某海域探明可燃冰储量约有194亿立方米.194亿用科学记数法表示为()
A.1.94×1010 B.0.194×1010 C.19.4×109 D.1.94×109
3.已知(1﹣m)2+|n+2|=0,则m+n的值为()
A.﹣1 B.﹣3 C.3 D.不能确定
4.下列关于单项式 的说法中,正确的是()
A.系数是3,次数是2 B.系数是 ,次数是2
C.系数是 ,次数是3 D.系数是 ,次数是3
5.由一个圆柱体与一个长方体组成的几何体如图,这个几何体的左视图是()
A. B. C. D.
6.如图,三条直线相交于点O.若CO⊥AB,∠1=56°,则∠2等于()
A.30° B.34° C.45° D.56°
7.如图,E点是AD延长线上一点,下列条件中,不能判定直线BC∥AD的是()
A.∠3=∠4 B.∠C=∠CDE C.∠1=∠2 D.∠C+∠ADC=180°
8.关于x的方程4x﹣3m=2的解是x=m,则m的值是()
A.﹣2 B.2 C.﹣ D.
9.下列说法:
①两点之间的所有连线中,线段最短;
②相等的角是对顶角;
③过直线外一点有且仅有一条直线与己知直线平行;
④两点之间的距离是两点间的线段.
其中正确的个数是()
A.1个 B.2个 C.3个 D.4个
10.如图,平面内有公共端点的六条射线OA,OB,OC,OD,OE,OF,从射线OA开始按逆时针方向依次在射线上写出数字1,2,3,4,5,6,7,…,则数字“2016”在()
A.射线OA上 B.射线OB上 C.射线OD上 D.射线OF上
二、填空题(本大题共有10小题,每小题3分,共30分)
11.比较大小:﹣ ﹣0.4.
12.计算: =.
13.若∠α=34°36′,则∠α的余角为.
14.若﹣2x2m+1y6与3x3m﹣1y10+4n是同类项,则m+n=.
15.若有理数在数轴上的位置如图所示,则化简|a+c|+|a﹣b|﹣|c+b|=.
16.若代数式x+y的值是1,则代数式(x+y)2﹣x﹣y+1的值是.
17.若方程2(2x﹣1)=3x+1与方程m=x﹣1的解相同,则m的值为.
18.已知线段AB=20cm,直线AB上有一点C,且BC=6cm,M是线段AC的中点,则AM=cm.
19.某商品每件的标价是330元,按标价的八折销售时,仍可获利10%,则这种商品每件的进价为元.
20.将一个边长为10cm正方形,沿粗黑实线剪下4个边长为cm的小正方形,拼成一个大正方形作为直四棱柱的一个底面;余下部分按虚线折叠成一个无盖直四棱柱;最后把两部分拼在一起,组成一个完整的直四棱柱,它的表面积等于原正方形的面积.
三、解答题(本大题有8小题,共50分)
21.计算:﹣14﹣(1﹣ )÷3×|3﹣(﹣3)2|.
22.解方程:
(1)4﹣x=3(2﹣x);
(2) ﹣ =1.
23.先化简,再求值:5(3a2b﹣ab2)﹣4(﹣ab2+3a2b),其中a=﹣1,b=﹣2.
24.已知代数式6x2+bx﹣y+5﹣2ax2+x+5y﹣1的值与字母x的取值无关
(1)求a、b的值;
(2)求a2﹣2ab+b2的值.
25.如图,点P是∠AOB的边OB上的一点.
(1)过点P画OB的垂线,交OA于点C,
(2)过点P画OA的垂线,垂足为H,
(3)线段PH的长度是点P到的距离,线段是点C到直线OB的距离.
(4)因为直线外一点到直线上各点连接的所有线中,垂线段最短,所以线段PC、PH、OC这三条线段大小关系是(用“<”号连接)
26.某酒店有三人间、双人间客房若干,各种房型每天的收费标准如下:
普通(元/间) 豪华(元/间)
三人间 160 400
双人间 140 300
一个50人的旅游团到该酒店入住,选择了一些三人普通间和双人豪华间入住,且恰好住满.已知该旅游团当日住宿费用共计4020元,问该旅游团入住的三人普通间和双人豪华间各为几间?
27.已知∠AOC=∠BOD=α(0°<α<180°)
(1)如图1,若α=90°
①写出图中一组相等的角(除直角外),理由是
②试猜想∠COD和∠AOB在数量上是相等、互余、还是互补的关系,并说明理由;
(2)如图2,∠COD+∠AOB和∠AOC满足的等量关系是;当α=°,∠COD和∠AOB互余.
28.如图,直线l上有AB两点,AB=12cm,点O是线段AB上的一点,OA=2OB
(1)OA=cm OB=cm;
(2)若点C是线段AB上一点,且满足AC=CO+CB,求CO的长;
(3)若动点P,Q分别从A,B同时出发,向右运动,点P的速度为2cm/s,点Q的速度为1cm/s.设运动时间为ts,当点P与点Q重合时,P,Q两点停止运动.
①当t为何值时,2OP﹣OQ=4;
②当点P经过点O时,动点M从点O出发,以3cm/s的速度也向右运动.当点M追上点Q后立即返回,以3cm/s的速度向点P运动,遇到点P后再立即返回,以3cm/s的速度向点Q运动,如此往返,知道点P,Q停止时,点M也停止运动.在此过程中,点M行驶的总路程是多少?
苏教版七年级上册数学期末测试卷参考答案
一、选择题(本大题共有10小题.每小题2分,共20分)
1.下列运算正确的是()
A.﹣a2b+2a2b=a2b B.2a﹣a=2
C.3a2+2a2=5a4 D.2a+b=2ab
【考点】合并同类项.
【专题】计算题.
【分析】根据合并同类项的法则,合并时系数相加减,字母与字母的指数不变.
【解答】解:A、正确;
B、2a﹣a=a;
C、3a2+2a2=5a2;
D、不能进一步计算.
故选:A.
【点评】此题考查了同类项定义中的两个“相同”:
(1)所含字母相同;
(2)相同字母的指数相同,是易混点,还有注意同类项与字母的顺序无关.
还考查了合并同类项的法则,注意准确应用.
2.在我国南海某海域探明可燃冰储量约有194亿立方米.194亿用科学记数法表示为()
A.1.94×1010 B.0.194×1010 C.19.4×109 D.1.94×109
【考点】科学记数法—表示较大的数.
【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【解答】解:194亿=19400000000,用科学记数法表示为:1.94×1010.
故选:A.
【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
3.已知(1﹣m)2+|n+2|=0,则m+n的值为()
A.﹣1 B.﹣3 C.3 D.不能确定
【考点】非负数的性质:偶次方;非负数的性质:绝对值.
【分析】本题可根据非负数的性质得出m、n的值,再代入原式中求解即可.
【解答】解:依题意得:
1﹣m=0,n+2=0,
解得m=1,n=﹣2,
∴m+n=1﹣2=﹣1.
故选A.
【点评】本题考查了非负数的性质,初中阶段有三种类型的非负数:
(1)绝对值;
(2)偶次方;
(3)二次根式(算术平方根).
当非负数相加和为0时,必须满足其中的每一项都等于0.根据这个结论可以求解这类题目.
4.下列关于单项式 的说法中,正确的是()
A.系数是3,次数是2 B.系数是 ,次数是2
C.系数是 ,次数是3 D.系数是 ,次数是3
【考点】单项式.
【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.
【解答】解:根据单项式系数、次数的定义可知,单项式 的系数是 ,次数是3.
故选D.
【点评】确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.
5.由一个圆柱体与一个长方体组成的几何体如图,这个几何体的左视图是()
A. B. C. D.
【考点】由三视图判断几何体;简单组合体的三视图.
【分析】找到从左面看所得到的图形即可.
【解答】解:从左面可看到一个长方形和上面的中间有一个小长方形.
故选:D.
【点评】本题考查了三视图的知识,左视图是从物体的左面看得到的视图.
6.如图,三条直线相交于点O.若CO⊥AB,∠1=56°,则∠2等于()
A.30° B.34° C.45° D.56°
【考点】垂线.
【分析】根据垂线的定义求出∠3,然后利用对顶角相等解答.
【解答】解:∵CO⊥AB,∠1=56°,
∴∠3=90°﹣∠1=90°﹣56°=34°,
∴∠2=∠3=34°.
故选:B.
【点评】本题考查了垂线的定义,对顶角相等的性质,是基础题.
7.如图,E点是AD延长线上一点,下列条件中,不能判定直线BC∥AD的是()
A.∠3=∠4 B.∠C=∠CDE C.∠1=∠2 D.∠C+∠ADC=180°
【考点】平行线的判定.
【分析】分别利用同旁内角互补两直线平行,内错角相等两直线平行得出答案即可.
【解答】解:A、∵∠3+∠4,
∴BC∥AD,本选项不合题意;
B、∵∠C=∠CDE,
∴BC∥AD,本选项不合题意;
C、∵∠1=∠2,
∴AB∥CD,本选项符合题意;
D、∵∠C+∠ADC=180°,
∴AD∥BC,本选项不符合题意.
故选:C.
【点评】此题考查了平行线的判定,平行线的判定方法有:同位角相等两直线平行;内错角相等两直线平行;同旁内角互补两直线平行,熟练掌握平行线的判定是解本题的关键.
8.关于x的方程4x﹣3m=2的解是x=m,则m的值是()
A.﹣2 B.2 C.﹣ D.
【考点】一元一次方程的解.
【专题】计算题;应用题.
【分析】使方程两边左右相等的未知数叫做方程的解方程的解.
【解答】解:把x=m代入方程得
4m﹣3m=2,
m=2,
故选B.
【点评】本题考查了一元一次方程的解,解题的关键是理解方程的解的含义.
9.下列说法:
①两点之间的所有连线中,线段最短;
②相等的角是对顶角;
③过直线外一点有且仅有一条直线与己知直线平行;
④两点之间的距离是两点间的线段.
其中正确的个数是()
A.1个 B.2个 C.3个 D.4个
【考点】线段的性质:两点之间线段最短;两点间的距离;对顶角、邻补角;平行公理及推论.
【分析】根据两点的所有连线中,可以有无数种连法,如折线、曲线、线段等,这些所有的线中,线段最短可得①说法正确;根据对顶角相等可得②错误;根据平行公理:经过直线外一点,有且只有一条直线与这条直线平行,可得说法正确;根据连接两点间的线段的长度叫两点间的距离可得④错误.
【解答】解:①两点之间的所有连线中,线段最短,说法正确;
②相等的角是对顶角,说法错误;
③过直线外一点有且仅有一条直线与己知直线平行,说法正确;
④两点之间的距离是两点间的线段,说法错误.
正确的说法有2个,
故选:B.
【点评】此题主要考查了线段的性质,平行公理.两点之间的距离,对顶角,关键是熟练掌握课本基础知识.
10.如图,平面内有公共端点的六条射线OA,OB,OC,OD,OE,OF,从射线OA开始按逆时针方向依次在射线上写出数字1,2,3,4,5,6,7,…,则数字“2016”在()
A.射线OA上 B.射线OB上 C.射线OD上 D.射线OF上
【考点】规律型:数字的变化类.
【分析】分析图形,可得出各射线上点的特点,再看2016符合哪条射线,即可解决问题.
【解答】解:由图可知OA上的点为6n,OB上的点为6n+1,OC上的点为6n+2,OD上的点为6n+3,OE上的点为6n+4,OF上的点为6n+5,(n∈N)
∵2016÷6=336,
∴2016在射线OA上.
故选A.
【点评】本题的数字的变换,解题的关键是根据图形得出每条射线上数的特点.
二、填空题(本大题共有10小题,每小题3分,共30分)
11.比较大小:﹣ >﹣0.4.
【考点】有理数大小比较.
【专题】推理填空题;实数.
【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.
【解答】解:|﹣ |= ,|﹣0.4|=0.4,
∵ <0.4,
∴﹣ >﹣0.4.
故答案为:>.
【点评】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.
12.计算: =﹣ .
【考点】有理数的乘方.
【分析】直接利用乘方的意义和计算方法计算得出答案即可.
【解答】解:﹣(﹣ )2=﹣ .
故答案为:﹣ .
【点评】此题考查有理数的乘方,掌握乘方的意义和计算方法是解决问题的关键.
13.若∠α=34°36′,则∠α的余角为55°24′.
【考点】余角和补角;度分秒的换算.
【分析】根据如果两个角的和等于90°(直角),就说这两个角互为余角.即其中一个角是另一个角的余角进行计算.
【解答】解:∠α的余角为:90°﹣34°36′=89°60′﹣34°36′=55°24′,
故答案为:55°24′.
【点评】此题主要考查了余角,关键是掌握余角定义.
14.若﹣2x2m+1y6与3x3m﹣1y10+4n是同类项,则m+n=1.
【考点】同类项.
【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程2m+1=3m﹣1,10+4n=6,求出n,m的值,再代入代数式计算即可.
【解答】解:∵﹣2x2m+1y6与3x3m﹣1y10+4n是同类项,
∴2m+1=3m﹣1,10+4n=6,
∴n=﹣1,m=2,
∴m+n=2﹣1=1.
故答案为1.
【点评】本题考查同类项的定义、方程思想及负整数指数的意义,是一道基础题,比较容易解答.
15.若有理数在数轴上的位置如图所示,则化简|a+c|+|a﹣b|﹣|c+b|=0.
【考点】实数与数轴.
【专题】计算题.
【分析】先根据数轴上各点的位置判断出a,b,c的符号及|a|,|b|和|c|的大小,接着判定a+c、a﹣b、c+b的符号,再化简绝对值即可求解.
【解答】解:由上图可知,c
一、选择题(本大题共有10小题.每小题2分,共20分)
1.下列运算正确的是()
A.﹣a2b+2a2b=a2bB.2a﹣a=2
C.3a2+2a2=5a4D.2a+b=2ab
【考点】合并同类项.
【专题】计算题.
【分析】根据合并同类项的法则,合并时系数相加减,字母与字母的指数不变.
【解答】解:A、正确;
B、2a﹣a=a;
C、3a2+2a2=5a2;
D、不能进一步计算.
故选:A.
【点评】此题考查了同类项定义中的两个“相同”:
(1)所含字母相同;
(2)相同字母的指数相同,是易混点,还有注意同类项与字母的顺序无关.
还考查了合并同类项的法则,注意准确应用.
2.在我国南海某海域探明可燃冰储量约有194亿立方米.194亿用科学记数法表示为()
A.1.94×1010B.0.194×1010C.19.4×109D.1.94×109
【考点】科学记数法—表示较大的数.
【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【解答】解:194亿=19400000000,用科学记数法表示为:1.94×1010.
故选:A.
【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
3.已知(1﹣m)2+|n+2|=0,则m+n的值为()
A.﹣1B.﹣3C.3D.不能确定
【考点】非负数的性质:偶次方;非负数的性质:绝对值.
【分析】本题可根据非负数的性质得出m、n的值,再代入原式中求解即可.
【解答】解:依题意得:
1﹣m=0,n+2=0,
解得m=1,n=﹣2,
∴m+n=1﹣2=﹣1.
故选A.
【点评】本题考查了非负数的性质,初中阶段有三种类型的非负数:
(1)绝对值;
(2)偶次方;
(3)二次根式(算术平方根).
当非负数相加和为0时,必须满足其中的每一项都等于0.根据这个结论可以求解这类题目.
4.下列关于单项式的说法中,正确的是()
A.系数是3,次数是2B.系数是,次数是2
C.系数是,次数是3D.系数是,次数是3
【考点】单项式.
【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.
【解答】解:根据单项式系数、次数的定义可知,单项式的系数是,次数是3.
故选D.
【点评】确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.
5.由一个圆柱体与一个长方体组成的几何体如图,这个几何体的左视图是()
A.B.C.D.
【考点】由三视图判断几何体;简单组合体的三视图.
【分析】找到从左面看所得到的图形即可.
【解答】解:从左面可看到一个长方形和上面的中间有一个小长方形.
故选:D.
【点评】本题考查了三视图的知识,左视图是从物体的左面看得到的视图.
6.如图,三条直线相交于点O.若CO⊥AB,∠1=56°,则∠2等于()
A.30°B.34°C.45°D.56°
【考点】垂线.
【分析】根据垂线的定义求出∠3,然后利用对顶角相等解答.
【解答】解:∵CO⊥AB,∠1=56°,
∴∠3=90°﹣∠1=90°﹣56°=34°,
∴∠2=∠3=34°.
故选:B.
【点评】本题考查了垂线的定义,对顶角相等的性质,是基础题.
7.如图,E点是AD延长线上一点,下列条件中,不能判定直线BC∥AD的是()
A.∠3=∠4B.∠C=∠CDEC.∠1=∠2D.∠C+∠ADC=180°
【考点】平行线的判定.
【分析】分别利用同旁内角互补两直线平行,内错角相等两直线平行得出答案即可.
【解答】解:A、∵∠3+∠4,
∴BC∥AD,本选项不合题意;
B、∵∠C=∠CDE,
∴BC∥AD,本选项不合题意;
C、∵∠1=∠2,
∴AB∥CD,本选项符合题意;
D、∵∠C+∠ADC=180°,
∴AD∥BC,本选项不符合题意.
故选:C.
【点评】此题考查了平行线的判定,平行线的判定方法有:同位角相等两直线平行;内错角相等两直线平行;同旁内角互补两直线平行,熟练掌握平行线的判定是解本题的关键.
8.关于x的方程4x﹣3m=2的解是x=m,则m的值是()
A.﹣2B.2C.﹣D.
【考点】一元一次方程的解.
【专题】计算题;应用题.
【分析】使方程两边左右相等的未知数叫做方程的解方程的解.
【解答】解:把x=m代入方程得
4m﹣3m=2,
m=2,
故选B.
【点评】本题考查了一元一次方程的解,解题的关键是理解方程的解的含义.
9.下列说法:
①两点之间的所有连线中,线段最短;
②相等的角是对顶角;
③过直线外一点有且仅有一条直线与己知直线平行;
④两点之间的距离是两点间的线段.
其中正确的个数是()
A.1个B.2个C.3个D.4个
【考点】线段的性质:两点之间线段最短;两点间的距离;对顶角、邻补角;平行公理及推论.
【分析】根据两点的所有连线中,可以有无数种连法,如折线、曲线、线段等,这些所有的线中,线段最短可得①说法正确;根据对顶角相等可得②错误;根据平行公理:经过直线外一点,有且只有一条直线与这条直线平行,可得说法正确;根据连接两点间的线段的长度叫两点间的距离可得④错误.
【解答】解:①两点之间的所有连线中,线段最短,说法正确;
②相等的角是对顶角,说法错误;
③过直线外一点有且仅有一条直线与己知直线平行,说法正确;
④两点之间的距离是两点间的线段,说法错误.
正确的说法有2个,
故选:B.
【点评】此题主要考查了线段的性质,平行公理.两点之间的距离,对顶角,关键是熟练掌握课本基础知识.
10.如图,平面内有公共端点的六条射线OA,OB,OC,OD,OE,OF,从射线OA开始按逆时针方向依次在射线上写出数字1,2,3,4,5,6,7,…,则数字“2016”在()
A.射线OA上B.射线OB上C.射线OD上D.射线OF上
【考点】规律型:数字的变化类.
【分析】分析图形,可得出各射线上点的特点,再看2016符合哪条射线,即可解决问题.
【解答】解:由图可知OA上的点为6n,OB上的点为6n+1,OC上的点为6n+2,OD上的点为6n+3,OE上的点为6n+4,OF上的点为6n+5,(n∈N)
∵2016÷6=336,
∴2016在射线OA上.
故选A.
【点评】本题的数字的变换,解题的关键是根据图形得出每条射线上数的特点.
二、填空题(本大题共有10小题,每小题3分,共30分)
11.比较大小:﹣>﹣0.4.
【考点】有理数大小比较.
【专题】推理填空题;实数.
【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.
【解答】解:|﹣|=,|﹣0.4|=0.4,
∵<0.4,
∴﹣>﹣0.4.
故答案为:>.
【点评】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.
12.计算:=﹣.
【考点】有理数的乘方.
【分析】直接利用乘方的意义和计算方法计算得出答案即可.
【解答】解:﹣(﹣)2=﹣.
故答案为:﹣.
【点评】此题考查有理数的乘方,掌握乘方的意义和计算方法是解决问题的关键.
13.若∠α=34°36′,则∠α的余角为55°24′.
【考点】余角和补角;度分秒的换算.
【分析】根据如果两个角的和等于90°(直角),就说这两个角互为余角.即其中一个角是另一个角的余角进行计算.
【解答】解:∠α的余角为:90°﹣34°36′=89°60′﹣34°36′=55°24′,
故答案为:55°24′.
【点评】此题主要考查了余角,关键是掌握余角定义.
14.若﹣2x2m+1y6与3x3m﹣1y10+4n是同类项,则m+n=1.
【考点】同类项.
【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程2m+1=3m﹣1,10+4n=6,求出n,m的值,再代入代数式计算即可.
【解答】解:∵﹣2x2m+1y6与3x3m﹣1y10+4n是同类项,
∴2m+1=3m﹣1,10+4n=6,
∴n=﹣1,m=2,
∴m+n=2﹣1=1.
故答案为1.
【点评】本题考查同类项的定义、方程思想及负整数指数的意义,是一道基础题,比较容易解答.
15.若有理数在数轴上的位置如图所示,则化简|a+c|+|a﹣b|﹣|c+b|=0.
【考点】实数与数轴.
【专题】计算题.
【分析】先根据数轴上各点的位置判断出a,b,c的符号及|a|,|b|和|c|的大小,接着判定a+c、a﹣b、c+b的符号,再化简绝对值即可求解.
【解答】解:由上图可知,c<b<0<a,|a|<|b|<|c|,
∴a+c<0、a﹣b>0、c+b<0,
所以原式=﹣(a+c)+a﹣b+(c+b)=0.
故答案为:0.
【点评】此题主要看错了实数与数轴之间的对应关系,要求学生正确根据数在数轴上的位置判断数的符号以及绝对值的大小,再根据运算法则进行判断.
16.若代数式x+y的值是1,则代数式(x+y)2﹣x﹣y+1的值是1.
【考点】代数式求值.
【专题】计算题.
【分析】先变形(x+y)2﹣x﹣y+1得到(x+y)2﹣(x+y)+1,然后利用整体思想进行计算.
【解答】解:∵x+y=1,
∴(x+y)2﹣x﹣y+1
=(x+y)2﹣(x+y)+1
=1﹣1+1
=1.
故答案为1.
【点评】本题考查了代数式求值:先把代数式根据已知条件进行变形,然后利用整体思想进行计算.
17.若方程2(2x﹣1)=3x+1与方程m=x﹣1的解相同,则m的值为2.
【考点】同解方程.
【分析】根据解一元一次方程,可得x的值,根据同解方程的解相等,可得关于m的方程,根据解方程,可得答案.
【解答】解:由2(2x﹣1)=3x+1,解得x=3,
把x=3代入m=x﹣1,得
m=3﹣1=2,
故答案为:2.
【点评】本题考查了同解方程,把同解方程的即代入第二个方程得出关于m的方程是解题关键.
18.已知线段AB=20cm,直线AB上有一点C,且BC=6cm,M是线段AC的中点,则AM=13或7cm.
【考点】两点间的距离.
【专题】计算题.
【分析】应考虑到A、B、C三点之间的位置关系的多种可能,即点C在线段AB的延长线上或点C在线段AB上.
【解答】解:①当点C在线段AB的延长线上时,此时AC=AB+BC=26cm,∵M是线段AC的中点,则AM=AC=13cm;
②当点C在线段AB上时,AC=AB﹣BC=14cm,∵M是线段AC的中点,则AM=AC=7cm.
故答案为:13或7.
【点评】本题主要考查两点间的距离的知识点,利用中点性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.
19.某商品每件的标价是330元,按标价的八折销售时,仍可获利10%,则这种商品每件的进价为240元.
【考点】一元一次方程的应用.
【专题】应用题.
【分析】设这种商品每件的进价为x元,根据题意列出关于x的方程,求出方程的解即可得到结果.
【解答】解:设这种商品每件的进价为x元,
根据题意得:330×80%﹣x=10%x,
解得:x=240,
则这种商品每件的进价为240元.
故答案为:240
【点评】此题考查了一元一次方程的应用,找出题中的等量关系是解本题的关键.
20.将一个边长为10cm正方形,沿粗黑实线剪下4个边长为2.5cm的小正方形,拼成一个大正方形作为直四棱柱的一个底面;余下部分按虚线折叠成一个无盖直四棱柱;最后把两部分拼在一起,组成一个完整的直四棱柱,它的表面积等于原正方形的面积.
【考点】展开图折叠成几何体.
【分析】利用剪下部分拼成的图形的边长等于棱柱的底面边长求解即可.
【解答】解:设粗黑实线剪下4个边长为xcm的小正方形,根据题意列方程
2x=10÷2
解得x=2.5cm,
故答案为:2.5.
【点评】本题考查了展开图折叠成几何体,解题的关键在于根据拼成棱柱的表面积与原图形的面积相等,从而判断出剪下的部分拼成的图形应该是棱柱的一个底面.
三、解答题(本大题有8小题,共50分)
21.计算:﹣14﹣(1﹣)÷3×|3﹣(﹣3)2|.
【考点】有理数的混合运算.
【分析】利用有理数的运算法则计算.有理数的混合运算法则即先算乘方或开方,再算乘法或除法,后算加法或减法.有括号(或绝对值)时先算.
【解答】解:﹣14﹣(1﹣)÷3×|3﹣(﹣3)2|
=﹣1﹣÷3×|3﹣9|
=﹣1﹣××6
=﹣1﹣1
=﹣2.
【点评】本题考查的是有理数的运算法则.注意:要正确掌握运算顺序,即乘方运算(和以后学习的开方运算)叫做三级运算;乘法和除法叫做二级运算;加法和减法叫做一级运算.在混合运算中要特别注意运算顺序:先三级,后二级,再一级;有括号的先算括号里面的;同级运算按从左到右的顺序.
22.解方程:
(1)4﹣x=3(2﹣x);
(2)﹣=1.
【考点】解一元一次方程.
【分析】去分母,去括号,移项,合并同类项,系数化一.
【解答】解:(1)4﹣x=3(2﹣x),
去括号,得4﹣x=6﹣3x,
移项合并同类项2x=2,
化系数为1,得x=1;
(2),
去分母,得3(x+1)﹣(2﹣3x)=6
去括号,得3x+3﹣2+3x=6,
移项合并同类项6x=5,
化系数为1,得x=.
【点评】本题考查解一元一次方程,关键知道去分母,去括号,移项,合并同类项,系数化一.
23.先化简,再求值:5(3a2b﹣ab2)﹣4(﹣ab2+3a2b),其中a=﹣1,b=﹣2.
【考点】整式的加减—化简求值.
【专题】计算题.
【分析】原式去括号合并得到最简结果,将a与b的值代入计算即可求出值.
【解答】解:原式=15a2b﹣5ab2+4ab2﹣12a2b
=3a2b﹣ab2,
当a=﹣1,b=﹣2时,原式=﹣6+4=﹣2.
【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.
24.已知代数式6x2+bx﹣y+5﹣2ax2+x+5y﹣1的值与字母x的取值无关
(1)求a、b的值;
(2)求a2﹣2ab+b2的值.
【考点】整式的加减—化简求值.
【专题】计算题.
【分析】(1)原式合并后,根据代数式的值与字母x无关,得到x一次项与二次项系数为0求出a与b的值即可;
(2)原式利用完全平方公式化简后,将a与b的值代入计算即可求出值.
【解答】解:(1)原式=(6﹣2a)x2+(b+1)x+4y+4,
根据题意得:6﹣2a=0,b+1=0,即a=3,b=﹣1;
(2)原式=(a﹣b)2
=42
=16.
【点评】此题考查了整式的加减﹣化简求值,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握运算法则是解本题的关键.
25.如图,点P是∠AOB的边OB上的一点.
(1)过点P画OB的垂线,交OA于点C,
(2)过点P画OA的垂线,垂足为H,
(3)线段PH的长度是点P到直线OA的距离,线段PC的长是点C到直线OB的距离.
(4)因为直线外一点到直线上各点连接的所有线中,垂线段最短,所以线段PC、PH、OC这三条线段大小关系是PH<PC<OC(用“<”号连接)
【考点】垂线段最短;点到直线的距离;作图—基本作图.
【专题】作图题.
【分析】(1)(2)利用方格线画垂线;
(3)根据点到直线的距离的定义得到线段PH的长度是点P到OA的距离,线段OP的长是点C到直线OB的距离;
(4)根据直线外一点到直线上各点连接的所有线中,垂线段最短得到PC>PH,CO>CP,即可得到线段PC、PH、OC的大小关系.
【解答】解:(1)如图:
(2)如图:
(3)直线0A、PC的长.
(4)PH<PC<OC.
【点评】本题考查了垂线段最短:直线外一点到直线上各点连接的所有线中,垂线段最短.也考查了点到直线的距离以及基本作图.
26.某酒店有三人间、双人间客房若干,各种房型每天的收费标准如下:
普通(元/间)豪华(元/间)
三人间160400
双人间140300
一个50人的旅游团到该酒店入住,选择了一些三人普通间和双人豪华间入住,且恰好住满.已知该旅游团当日住宿费用共计4020元,问该旅游团入住的三人普通间和双人豪华间各为几间?
【考点】一元一次方程的应用.
【分析】首先设该旅游团入住的三人普通间数为x,根据题意表示出双人豪华间数为,进而利用该旅游团当日住宿费用共计4020元,得出等式求出即可.
【解答】解:设该旅游团入住的三人普通间数为x,则入住双人豪华间数为.
根据题意,得160x+300×=4020.
解得:x=12.
从而=7.
答:该旅游团入住三人普通间12间、双人豪华间7间.
(注:若用二元一次方程组解答,可参照给分)
【点评】此题主要考查了一元一次方程的应用,根据题意表示出双人豪华间数进而得出等式是解题关键.
27.已知∠AOC=∠BOD=α(0°<α<180°)
(1)如图1,若α=90°
①写出图中一组相等的角(除直角外)∠AOD=∠BOC,理由是同角的余角相等
②试猜想∠COD和∠AOB在数量上是相等、互余、还是互补的关系,并说明理由;
(2)如图2,∠COD+∠AOB和∠AOC满足的等量关系是互补;当α=45°,∠COD和∠AOB互余.
【考点】余角和补角.
【分析】(1)①根据同角的余角相等解答;
②表示出∠AOD,再求出∠COD,然后整理即可得解;
(2)根据(1)的求解思路解答即可.
【解答】解:(1)①∵∠AOC=∠BOD=90°,
∴∠AOD+∠AOB=∠BOC+∠AOB=90°,
∴∠AOD=∠BOC;
②∵∠AOD=∠BOD﹣∠AOB=90°﹣∠AOB,
∴∠COD=∠AOD+∠AOC=90°﹣∠AOB+90°,
∴∠AOB+∠COD=180°,
∴∠COD和∠AOB互补;
(2)由(1)可知∠COD+∠AOB=∠BOD+∠AOC=α+α=2α,
所以,∠COD+∠AOB=2∠AOC,
若∠COD和∠AOB互余,则2∠AOC=90°,
所以,∠AOC=45°,
即α=45°.
故答案为:(1)AOD=∠BOC,同角的余角相等;(2)互补,45.
【点评】本题考查了余角和补角,熟记概念并准确识图,理清图中各角度之间的关系是解题的关键.
28.如图,直线l上有AB两点,AB=12cm,点O是线段AB上的一点,OA=2OB
(1)OA=8cmOB=4cm;
(2)若点C是线段AB上一点,且满足AC=CO+CB,求CO的长;
(3)若动点P,Q分别从A,B同时出发,向右运动,点P的速度为2cm/s,点Q的速度为1cm/s.设运动时间为ts,当点P与点Q重合时,P,Q两点停止运动.
①当t为何值时,2OP﹣OQ=4;
②当点P经过点O时,动点M从点O出发,以3cm/s的速度也向右运动.当点M追上点Q后立即返回,以3cm/s的速度向点P运动,遇到点P后再立即返回,以3cm/s的速度向点Q运动,如此往返,知道点P,Q停止时,点M也停止运动.在此过程中,点M行驶的总路程是多少?
【考点】一元一次方程的应用;数轴.
【分析】(1)由于AB=12cm,点O是线段AB上的一点,OA=2OB,则OA+OB=3OB=AB=12cm,依此即可求解;
(2)根据图形可知,点C是线段AO上的一点,可设CO的长是xcm,根据AC=CO+CB,列出方程求解即可;
(3)①分0≤t<4;4≤t<6;t≥6三种情况讨论求解即可;
②求出点P经过点O到点P,Q停止时的时间,再根据路程=速度×时间即可求解.
【解答】解:(1)∵AB=12cm,OA=2OB,
∴OA+OB=3OB=AB=12cm,解得OB=4cm,
OA=2OB=8cm.
故答案为:8,4;
(2)设CO的长是xcm,依题意有
8﹣x=x+4+x,
解得x=.
故CO的长是cm;
(3)①当0≤t<4时,依题意有
2(8﹣2t)﹣(4+t)=4,
解得t=1.6;
当4≤t<6时,依题意有
2(2t﹣8)﹣(4+t)=4,
解得t=8(不合题意舍去);
当t≥6时,依题意有
2(2t﹣8)﹣(4+t)=4,
解得t=8.
故当t为1.6s或8s时,2OP﹣OQ=4;
②[4+(8÷2)×1]÷(2﹣1)
=[4+4]÷1
=8(s),
3×8=24(cm).
答:点M行驶的总路程是24cm.
【点评】本题考查了数轴及数轴的三要素(正方向、原点和单位长度).一元一次方程的应用以及数轴上两点之间的距离公式的运用,行程问题中的路程=速度×时间的运用.注意(3)①需要分类讨论.
以上就是七年级上册数学期末测试题的全部内容,27.(本小题满分9分)如图,已知线段AB和CD的公共部分BD= AB= CD,线段AB、CD的中点 E、F之间距离是10cm,求AB、CD的长.28、(8分)七年级一班学生在召开期末总结表彰会前,班主任安排班长李小波去商店买奖品。