当前位置: 首页 > 所有学科 > 数学

2017高考数学答案浙江,2017高考数学浙江卷答案

  • 数学
  • 2023-05-28
目录
  • 2017高考数学浙江
  • 2013浙江高考数学试卷及答案
  • 2015浙江高考数学理科答案
  • 2018年高考数学浙江卷答案
  • 17年浙江高考数学答案

  • 2017高考数学浙江

    事实上,在很多地方你都会看到类似的经验,但是我的体验告诉我,之所以不同的人都按照这样的方法复习,成绩仍然相差很大,主要的原因可以归结为两点:1、是否真正坚持了下来;2、精力下足了,效率是不是足够高。第一点相信不必多说了,如果本人的意志不够坚定,我只好说,即使是神仙也救不了你。第二点也许是你一定会面临到的问题:当你的基础不够好的时候,在强化阶段你就会感觉到资料上的例题很多(甚至几乎是全部)你都没有办法独立解出,即使看过了解答再次遇到的时候还是一头雾水(也就是说,你遇到的题目总是陌生的)。这时是最考验一个人毅力的时候,你可以回过头去复习课本,如果你感觉还不太差,也可以通过大量练习相似题目逐步体会这一类题的解题思路。归结起来就是:如果不熟悉,那就多去熟悉。等到拨云见日的时候你会很有成就绝裂感。

    总体来说,携和如果你真正复习了,那么复习并隐闭的效果一般会随着你的复习时间增加而增加,或者说随复习强度增加而增加,也就是熟能生巧。我经历三战并最终考上,相信多少有资格说这样的话。技巧之类的东西要在你有一定及知识基础之后才有其充分的意义,否则很有可能是镜花水月。现在还有超过半年的时间,请一定把基础打好。

    2013浙江高考数学试卷及答案

    由前面推导可知,即由题设可知根的判别式贺庆=16(4K^2-m^2+1)>0,后面又禅握握求得k=-(m+1)/2

    这样将k代入进去,4K^2-m^2+1>0

    4ⅹ[-(m+1)/2]^2-m^2+1>0

    化简得2m+2>0得m>-1

    所以当且皮仔仅当m>-1时,根的判别式﹥0就是这样得来的。

    2015浙江高考数学理科答案

    一、选择题

    1.已知函数f(x)=2x3-x2+m的图象上A点处的切线与直线x-y+3=0的夹角为45°,则A点的横坐标为()

    A.0 B.1 C.0或 D.1或

    答案:C命题立意:本题考查导数的应用,难度中等.

    解题思路:直线x-y+3=0的倾斜角为45°,

    切线的倾斜角为0°或90°,由f′(x)=6x2-x=0可得x=0或x=,故选C.

    易错点拨:常见函数的切线的斜率都是存在的,所以倾斜角不会是90°.

    2.设函数f(x)=则满足f(x)≤2的x的取值范围是()

    A.[-1,2] B.[0,2]

    C.[1,+∞) D.[0,+∞)

    答案:D命题立意:本题考查分段函数的相关知识,求解时可分为x≤1和x>1两种情况进行求解,再对所求结果求并集即得最终结果.

    解题思路:若x≤1,则21-x≤2,解得0≤x≤1;若x>1,则1-log2 x≤2,解得x>1,综上可知,x≥0.故选D.

    3.函数y=x-2sin x,x的大致图象是()

    答案:D解析思路:因为函数为奇函数,所以图象关于原点对称,排除A,B.函数的导数为f′(x)=1-2cos x,由f′(x)=1-2cos x=0,得cos x=,所以x=.当00,函数单调递增,所以当x=时,函数取得极小值.故选D.

    4.已知函数f(x)满足竖宏:当x≥4时,f(x)=2x;当x<4时,f(x)=f(x+1),则f=()

    A. B. C.12 D.24

    答案:D命题立意:本题考查指数式的运算,难度中等.

    解题思路:利用指数式的运算法则求解.因为2+log =2+log2 3(3,4),所以f=f=f(3+log2 3)=23+log2 3=8×3=24.

    5.已知函数f(x)=若关于x的方程f2(x)-af(x)=0恰好有5个不同的实数解,则a的取值范围是()

    A.(0,1) B.(0,2) C.(1,2) D.(0,3)

    答案:

    A解题思路:设t=f(x),则方程为t2-at=0,解得t=0或t=a,

    即f(x)=0或衡伍f(x)=a.

    如图,作出函数的图象,

    由函数图象可知,f(x)=0的解有两个,

    故要使方程f2(x)-af(x)=0恰有5个不同的解,则方程f(x)=a的解必有三个,此时0

    6.若R上的奇函数y=f(x)的图象关于直线x=1对称,且当0

    A.4 020 B.4 022 C.4 024 D.4 026

    答案:B命题立意:本题考查函数性质的应用及数形结合思想,考查推理与转化能力,难度中等.

    解题思路:由于函数图象关于直线x=1对称,故有f(-x)=f(2+x),又函数为奇函数,故-f(x)=f(2+x),从而得-f(x+2)=f(x+4)=f(x),即函数以4为周期,据题意其在一个周期内的图象如图所示.

    又函数为定义在R上的奇函数,故f(0)=0,因此f(x)=+f(0)=,因此在区间(2 010,2 012)内的函数图象可由区间(-2,0)内的图象向右平移2 012个单位得到,此时两根关于直线x=2 011对称,故x1+x2=4 022.

    7.已知函数满足f(x)=2f,当x[1,3]时,f(x)=ln x,若在区间内,函数g(x)=f(x)-ax有三个不同零点,则实数a的取值范围是()

    A. B.

    C. D.

    答案:A思路点拨:当x∈时,则1<≤3,

    f(x)=2f=2ln=-2ln x.

    f(x)=

    g(x)=f(x)-ax在区间内有三个不同零点,即函数y=与y=a的图象在上有三个不同的交点.

    当x∈时,y=-,

    y′=<0,

    y=-在上递减,

    y∈(0,6ln 3).

    当x[1,3]时,y=,

    y′=,

    y=在[1,e]上递增,在[e,3]上递减.

    结合图象,所以y=与y=a的图象有三个交点时,a的取值范围为.

    8.若函数f(x)=loga有最小值,则实数a的取值余拦册范围是()

    A.(0,1) B.(0,1)(1,)

    C.(1,) D.[,+∞)

    答案:C解题思路:设t=x2-ax+,由二次函数的性质可知,t有最小值t=-a×+=-,根据题意,f(x)有最小值,故必有解得1

    9.已知函数f(x)=若函数g(x)=f(x)-m有三个不同的零点,则实数m的取值范围为()

    A. B.

    C. D.

    答案:

    C命题立意:本题考查函数与方程以及数形结合思想的应用,难度中等.

    解题思路:由g(x)=f(x)-m=0得f(x)=m,作出函数y=f(x)的图象,当x>0时,f(x)=x2-x=2-≥-,所以要使函数g(x)=f(x)-m有三个不同的零点,只需直线y=m与函数y=f(x)的图象有三个交点即可,如图.只需-

    10.在实数集R中定义一种运算“*”,对任意给定的a,bR,a*b为确定的实数,且具有性质:

    (1)对任意a,bR,a*b=b*a;

    (2)对任意aR,a*0=a;

    (3)对任意a,bR,(a*b)*c=c*(ab)+(a*c)+(c*b)-2c.

    关于函数f(x)=(3x)*的性质,有如下说法:函数f(x)的最小值为3;函数f(x)为奇函数;函数f(x)的单调递增区间为,.其中所有正确说法的个数为()

    A.0 B.1 C.2 D.3

    答案:B解题思路:f(x)=f(x)*0=*0=0]3x×+[(3x)*0]+)-2×0=3x×+3x+=3x++1.

    当x=-1时,f(x)0,得x>或x<-,因此函数f(x)的单调递增区间为,,即正确.

    二、填空题

    11.已知f(x)=若f[f(0)]=4a,则实数a=________.

    答案:2命题立意:本题考查了分段函数及复合函数的相关知识,对复合函数求解时,要从内到外逐步运算求解.

    解题思路:因为f(0)=2,f(2)=4+2a,所以4+2a=4a,解得a=2.

    12.设f(x)是定义在R上的奇函数,在(-∞,0)上有2xf′(2x)+f(2x)<0且f(-2)=0,则不等式xf(2x)<0的解集为________.

    答案:(-1,0)(0,1)命题立意:本题考查函数的奇偶性与单调性的应用,难度中等.

    解题思路:[xf(2x)]′=2xf′(2x)+f(2x)<0,故函数F(x)=xf(2x)在区间(-∞,0)上为减函数,又由f(x)为奇函数可得F(x)=xf(2x)为偶函数,且F(-1)=F(1)=0,故xf(2x)<0F(x)<0,当x0时,不等式解集为(0,1),故原不等式解集为(-1,0)(0,1).

    13.函数f(x)=|x-1|+2cos πx(-2≤x≤4)的所有零点之和为________.

    答案:6命题立意:本题考查数形结合及函数与方程思想的应用,充分利用已知函数的对称性是解答本题的关键,难度中等.

    解题思路:由于函数f(x)=|x-1|+2cos πx的零点等价于函数g(x)=-|x-1|,h(x)=2cos πx的图象在区间[-2,4]内交点的横坐标.由于两函数图象均关于直线x=1对称,且函数h(x)=2cos πx的周期为2,结合图象可知两函数图象在一个周期内有2个交点且关于直线x=1对称,故其在三个周期[-2,4]内所有零点之和为3×2=6.

    14.已知函数f(x)=ln ,若f(a)+f(b)=0,且0

    答案:命题立意:本题主要考查对数函数的运算,函数的值域,考查运算求解能力,难度中等.

    解题思路:由题意可知,ln +ln =0,

    即ln=0,从而×=1,

    化简得a+b=1,

    故ab=a(1-a)=-a2+a=-2+,

    又0

    故0<-2+<.

    B组

    一、选择题

    1.已知偶函数f(x)在区间[0,+∞)单调递减,则满足不等式f(2x-1)>f成立的x取值范围是()

    A. B.

    C. D.

    答案:B解析思路:因为偶函数的图象关于y轴对称,在区间[0,+∞)单调递减,所以f(x)在(-∞,0]上单调递增,若f(2x-1)>f,则-<2x-1<,

    2018年高考数学浙江卷答案

    一、选择题

    1.已知抛物线y2=2px(p>0)的焦点为F,点P1(x1,y1),P2(x2,y2),P3(x3,y3)在抛物线上,且2x2=x1+x3,则有()

    A.|FP1|+|FP2|=|FP3|

    B.|FP1|2+|FP2|2=|FP3|2

    C.2|FP2|=|FP1|+|FP3|

    D.|FP2|2=|FP1|·|FP3|

    答案:C解题思路:抛物线的准线方程为x=-,由定义得|FP1|=x1+,|FP2|=x2+,|FP3|=x3+,则|FP1|+|FP3|=x1++x3+=x1+x3+p,2|FP2|=2x2+p,由2x2=x1+x3,得2|FP2|=|FP1|+|FP3|,故选C.

    2.与抛物线y2=8x相切倾斜角为135°的直线l与x轴和y轴的交点分别是A和B,那么过A,B两点的最小圆截抛物线y2=8x的准线所得的弦长为()

    A.4B.2C.2D.

    答案:C命题立意:本题考查直线与抛物线及圆的位置关系的应用,难度中等.

    解题思路:设直线l的方程为y=-x+b,联立直线与抛物线方程,消元得y2+8y-8b=0,因为直线与抛物线相切,故Δ=82-4×(-8b)=0,解得b=-2,故直线l的方程为x+y+2=0,从而A(-2,0),B(0,-2),因此过A,B两点最小圆即为以AB为直径的圆,其方程为(x+1)2+(y+1)2=2,而抛物线y2=8x的准线方程为x=-2,此时圆心(-1,-1)到准线的距离为1,故所截弦长为2=2.

    3.如图,过抛物线y2=2px(p>0)的焦点F的直线l交抛物线于点A,B,交其准线于点C,若|BC|=2|BF|,且|AF|=3,则此抛物线的方程为()

    A.y2=9x B.y2=6x

    C.y2=3x D.y2=x

    答案:C命题立意:本题考查抛物线定义的应用及抛物线方程的求解,难度中等.

    解题思路:如图,分别过点A,B作抛物线准线的垂线,垂足分别为E,D,由抛物线定义可知|AE|=|AF|=3,|BC|=2|BF|=2|BD|,在RtBDC中,可知BCD=30°,故在RtACE中,可得|AC|=2|AE|=6,故|CF|=3,则GF即为ACE的中位线,故|GF|=p==,因此抛物线方程为y2=2px=3x.

    4.焦点在x轴上的双曲线C的左焦点为F,右顶点为A,若线段FA的中垂线与双曲线C有公共点,则双曲线C的离心率的取值范围是()

    A.(1,3) B.(1,3]

    C.(3,+∞) D.[3,+∞)

    答案:D命题立意:本题主要考查双曲线的离心率问题,考查考生的化归与转化能力.

    解题思路:设AF的中点C(xC,0),由题意xC≤-a,即≤-a,解得e=≥3,故选D.

    5.过点(,0)引直线l与曲线y=相交于A,B两点,O为坐标原点,当AOB的面积取值时,直线l的搭肆斜率等于()

    A. B.- C.± D.-

    答案:B命题透析:本题考查直线与圆的位置关系以及数形结合的数学思想.

    思路点拨:由y=,得x2+y2=1(y≥0),即该曲线表示圆心在原点,半径为1的上半圆,如图所示.

    故SAOB=|OA||OB|·sin AOB=sin AOB,所以当sin AOB=1,即OAOB时,SAOB取得值,此时O到直线l的距离d=|OA|sin 45°=.设此时直线l的方程为y=k(x-),即kx-y-k=0,则有=,解得k=±,由图可知直线l的倾斜角为钝角,故k=-.

    6.点P在直线l:y=x-1上,若存在过P的直线交抛物线y=x2于A,B两点,且|PA|=|AB|,则称点P为“正点”,那么下列结论中正知渗轿确的是()

    A.直线l上的所有点都是“正点”

    B.直线l上仅有有限个点是“正点”

    C.直线l上的所有点都不是“正点”

    喊或D.直线l上有无穷多个点(点不是所有的点)是“正点”

    答案:A解题思路:本题考查直线与抛物线的定义.设A(m,n),P(x,x-1),则B(2m-x,2n-x+1), A,B在y=x2上, n=m2,2n-x+1=(2m-x)2,消去n,整理得关于x的方程x2-(4m-1)x+2m2-1=0, Δ=8m2-8m+5>0恒成立, 方程恒有实数解.

    二、填空题

    7.设A,B为双曲线-=1(b>a>0)上两点,O为坐标原点.若OAOB,则AOB面积的最小值为________.

    答案:解题思路:设直线OA的方程为y=kx,则直线OB的方程为y=-x,则点A(x1,y1)满足故x=,y=,

    |OA|2=x+y=;

    同理|OB|2=.

    故|OA|2·|OB|2=·=.

    =≤(当且仅当k=±1时,取等号), |OA|2·|OB|2≥,

    又b>a>0,

    故SAOB=|OA|·|OB|的最小值为.

    8.已知直线y=x与双曲线-=1交于A,B两点,P为双曲线上不同于A,B的点,当直线PA,PB的斜率kPA,kPB存在时,kPA·kPB=________.

    答案:解题思路:设点A(x1,y1),B(x2,y2),P(x0,y0),则由得y2=,y1+y2=0,y1y2=-,

    x1+x2=0,x1x2=-4×.

    由kPA·kPB=·====知kPA·kPB为定值.

    9.设平面区域D是由双曲线y2-=1的两条渐近线和抛物线y2=-8x的准线所围成的三角形(含边界与内部).若点(x,y)D,则目标函数z=x+y的值为______.

    答案:

    3解题思路:本题考查双曲线、抛物线的性质以及线性规划.双曲线y2-=1的两条渐近线为y=±x,抛物线y2=-8x的准线为x=2,当直线y=-x+z过点A(2,1)时,zmax=3.

    三、解答题

    10.已知抛物线y2=4x,过点M(0,2)的直线与抛物线交于A,B两点,且直线与x轴交于点C.

    (1)求证:|MA|,|MC|,|MB|成等比数列;

    (2)设=α,=β,试问α+β是否为定值,若是,求出此定值;若不是,请说明理由.

    解析:(1)证明:设直线的方程为:y=kx+2(k≠0),

    联立方程可得得

    k2x2+(4k-4)x+4=0.

    设A(x1,y1),B(x2,y2),C,

    则x1+x2=-,x1x2=,

    |MA|·|MB|=|x1-0|·|x2-0|=,

    而|MC|2=2=,

    |MC|2=|MA|·|MB|≠0,

    即|MA|,|MC|,|MB|成等比数列.

    (2)由=α,=β,得

    (x1,y1-2)=α,

    (x2,y2-2)=β,

    即得:α=,β=,

    则α+β=,

    由(1)中代入得α+β=-1,

    故α+β为定值且定值为-1.

    11.如图,在平面直角坐标系xOy中,设点F(0,p)(p>0),直线l:y=-p,点P在直线l上移动,R是线段PF与x轴的交点,过R,P分别作直线l1,l2,使l1PF,l2l,l1∩l2=Q.

    (1)求动点Q的轨迹C的方程;

    (2)在直线l上任取一点M作曲线C的两条切线,设切点为A,B,求证:直线AB恒过一定点;

    (3)对(2)求证:当直线MA,MF,MB的斜率存在时,直线MA,MF,MB的斜率的倒数成等差数列.

    解题思路:本题考查轨迹方程的求法及直线与抛物线的位置关系.(1)利用抛物线的定义即可求出抛物线的标准方程;(2)利用导数及方程根的思想得出两切点的直线方程,进一步求出直线恒过的定点;(3)分别利用坐标表示三条直线的斜率,从而化简证明即可.

    解析:(1)依题意知,点R是线段PF的中点,且RQ⊥FP,

    RQ是线段FP的垂直平分线. |QP|=|QF|.故动点Q的轨迹C是以F为焦点,l为准线的抛物线,其方程为:x2=4py(p>0).

    (2)设M(m,-p),两切点为A(x1,y1),B(x2,y2).

    由x2=4py得y=x2,求导得y′=x.

    两条切线方程为y-y1=x1(x-x1),

    y-y2=x2(x-x2),

    对于方程,代入点M(m,-p)得,

    -p-y1=x1(m-x1),又y1=x,

    -p-x=x1(m-x1),

    整理得x-2mx1-4p2=0.

    同理对方程有x-2mx2-4p2=0,

    即x1,x2为方程x2-2mx-4p2=0的两根.

    x1+x2=2m,x1x2=-4p2.

    设直线AB的斜率为k,k===(x1+x2),

    所以直线的方程为y-=(x1+x2)(x-x1),展开得:

    y=(x1+x2)x-,

    将代入得:y=x+p.

    直线恒过定点(0,p).

    17年浙江高考数学答案

    不是错题,解答如下:

    (1)取AD的中点F,连接EF,CF

    ∵E为PD的中点

    ∴EF∥PA

    在四边形ABCD中,BC∥AD,皮渗迅AD=2DC=2CB,F为中点

    易得CF∥AB

    ∴平面EFC∥平面ABP

    ∵EC平面EFC

    ∴EC∥平面PAB

    (2)连结BF,过F作FM⊥PB与M,连结PF

    因为PA=PD,所以PF⊥AD

    易知四边形BCDF为矩形,所以BF⊥AD

    所以AD⊥平面PBF,又AD∥BC,所以BC⊥平面PBF,所以BC⊥PB

    设DC=CB=1,则AD=PC=2,所燃此以PB=√2,BF=PF=1

    所以MF=1/2,又BC⊥平面PBF,所以BC⊥MF

    所以MF⊥平面PBC,即点F到平面PBC的距离为1/2

    也即点D到平面PBC的距离为1/2

    因为E为PD的中点,所以点E到平面PBC的距离为1/4

    在△PCD中,PC=2,CD=1,PD=√2,由余弦定理可得CE=√2

    设直线CE与平面PBC所成的角为θ,则sinθ=(1/4)/喊磨CE=√2/8.

    还可以建立直角坐标系,用向量法来解。

    猜你喜欢