当前位置: 首页 > 所有学科 > 数学

八年级上册数学试题,初二数学上册试卷

  • 数学
  • 2023-12-17

八年级上册数学试题?一、选择题(共5小题)1.若等腰三角形的周长是100cm,则能反映这个等腰三角形的腰长y(cm)与底边长x(cm)之间的函数关系式的图象是()A. B.C. D.2.目前,我国大约有1.3亿高血压病患者,那么,八年级上册数学试题?一起来了解一下吧。

八年级数学考试试卷

这篇八年级数学上册期末综合测试题的文章,是 考 网特地为大家整理的,希望对大家有所帮助!

一、仔细选一选。

1.下列运算中,正确的是()

A、x3•x3=x6B、3x2÷2x=xC、(x2)3=x5D、(x+y2)2=x2+y4

2.下列图案中是轴对称图形的是()

3.下列各式由左边到右边的变形中,是分解因式的为()

A、a(x+y)=ax+ayB、x2-4x+4=x(x-4)+4

C、10x2-5x=5x(2x-1) D、x2-16+3x=(x-4)(x+4)+3x

4.下列说法正确的是()

A、0.25是0.5的一个平方根B、负数有一个平方根

C、72的平方根是7D、正数有两个平方根,且这两个平方根之和等于0

5.下列各曲线中不能表示y是x的函数的是()

6.如图, 四点在一条直线上, 再添一个条件仍不能证明⊿ABC≌⊿DEF的是()

A.AB=DE B..DF∥AC

C.∠E=∠ABC D.AB∥DE

7.已知 , ,则 的值为()

A、9B、 C、12D、

8.已知正比例函数 (k≠0)的函数值y随x的增大而减小,则一次函数y=x+k的图象大致是()

9、打开某洗衣机开关,在洗涤衣服时(洗衣机内无水),洗衣机经历了进水、清洗、排水、脱水四个连续过程,其中进水、清洗、排水时洗衣机中的水量y(升)与时间x(分钟)之间满足某种函数关系,其函数图象大致为()

10.已知等腰三角形一边长为4,一边的长为10,则等腰三角形的周长为()

A、14B、18C、24D、18或24

11.在实数 中,无理数的个数是()

A.1B.2C.3 D.4

12.已知一次函数的图象与直线y=-x+1平行,且过点(8,2),那么此一次函数的解析式为()

A.y=-x-2 B.y=-x-6C.y=-x+10D.y=-x-1

13.如果单项式 与 x3ya+b是同类项,那么这两个单项式的积是()

A.x6y4B.-x3y2C.- x3y2D.-x6y4

14.计算(-3a3)2÷a2的结果是()

A.9a4B.-9a4C.6a4D.9a3

15.若m+n=7,mn=12,则m2-mn+n2的值是()

A.11B.13 C.37 D.61

16.下列各式是完全平方式的是()

A.x2-x+B.1+x2C.x+xy+lD.x2+2a-l

17.一次函数y=mx-n的图象如图所示,则下面结论正确的是()

A.m<0,n<0 B.m0C.m>0,n>0 D.m>0,n<0

18.某公司市场营销部的个人月收入与其每月的销售量成一次函数关系,其图象如图所示,由图中给出的信息可知,营销人员没有销售时的收入是()

A.310元B.300元

C.290元D.280元

19.已知多项式2x2+bx+c分解因式为2(x-3)(x+1),则b,c的值为()

A.b=3,c=-1B.b=-6,c=2

C.b=-6,c=-4 D.b=-4,c=-6

20.函数y= 中自变量x的取值范围是()

A.x≥2 B.x≠1C.x>-2且x≠1 D.x≥-2且x≠1

21.直线y=-2x+a经过(3,y1,)和(-2,y2),则y1与y2的大小关系是()

A.y1>y2 B.y1

1.若a4•ay=a19,则y=_____________.

2.计算:( )2008×(- )2009×(-1)2007=_____________.

3.若多项式x2+mx+9恰好是另一个多项式的平方,则m=_____________.

4.已知: ,则x+y的算术平方根为_____________.

5.已知点A(-2,4),则点A关于y轴对称的点的坐标为_____________.

6.周长为10cm的等腰三角形,腰长Y(cm)与底边长x(cm)之间的函数关系式是_____________.

7.将直线y=4x+1的图象向下平移3个单位长度,得到直线_____________.

8.已知a+ =3,则a2+ 的值是______________.

9.已知一次函数y=-x+a与y=x+b的图象相交于点(m,8),则a+b=_____________.

10.已知直线y=x-3与y=2x+2的妄点为(-5,-8),则方程组 的解是_________.

11.如果直线y=-2x+k与两坐标轴所围成的三角形面积是9,则k的值为_____________.

12.观察下列单项式:

x,-2x2,4x3,-8x4,16x5,……

根据你发现的规律写出第10个单项式为_____________,第n个单项式为_____________.

13.三角形的三条边长分别是3cm、5cm、xcm,则此三角形的周长y(cm)与x(cm)的函数关系是。

数学八年级上册题

希望在眼前,心情放舒缓,步子跟得紧,松弛有步调,在做八年级数学测试题中,能锻炼自己的心志。下面是我为大家精心推荐的8年级上册数学第四章实数 单元测试 题,希望能够对您有所帮助。

8年级上册数学第四章实数单元试题

(满分:100分 时间:90分钟)

一、选择题 (每题3分,共24分)

1.下列说法正确的是 ( )

A.O没有平方根 B.-1的平方根是-1

C.4的平方根是-2 D.(-3)2的算术平方根是3

2.下列运算中,错误的个数为 ( )

① =1 ;② =±4;③ =- =-2;④ = + = .

A.1 B.2 C.3 D.4

3.已知下列结论:①在数轴上只能表示无理数;②任何一个无理数都能用数轴上的点表示;③实数与数轴上的点一一对应;④有理数有无限个,无理数有有限个.其中正确的结论是 ( )

A.①② B.②③ C.③④ D.②③④

4.如图,直径为1个单位长度的圆从原点沿数轴向右无滑动地滚动一周,滚到了点A处,下列说法正确的是 ( )

A.点A所表示的是π

B.OA上只有一个无理数π

C.数轴上无理数和有理数一样多

D.数轴上的有理数比无理数要多一些

5.近似数0.38万精确到 ( )

A.十分位 B.百位 C.千位 D.万位

6.如图,以数轴的单位长度线段为边作一个正方形,以表示数2的点为圆心、正方形对角线的长为半径画弧,交数轴于点A,则点A表示的数是 ( )

A.- B.2- C.1- D.1+

7.实数a,b,c在数轴上的对应点如图所示,化简a+ - 的值是 ( )

A.-b-c B.c-b C.2(a-b+c) D.2a+b+c

8.已知实数x,y,m满足 + =0,若y为负数,则m的取值范围是

( )

A.m>6 B.n<6 C.m>-6 D.m<-6

二、填空题 (每题2分,共20分)

9.64的立方根是 .

10.若a是9的算术平方根,而b的算术平方根是9,则a+b= .

11.全国第六次人口普查登记的人口约是13.40亿人,你认为人口数是精确到

位.

12.比较大小: .(填“>”、“<”或“=”)

13.若x,y为实数,且满足 + =0,则 ( )2016的值是 .

14.计算: - = .

15.如图,在数轴上有O,A,B,C,D五点,根据图中各点所表示的数,判断 在数轴上的位置会落在线段 上.

16.若a与b互为相反数,则它们的立方根的和是 .

17.在数轴上,点A (表示整数a) 在原点的左侧,点B (表 示整数b) 在原点的右侧.若 =2016,且AO=2BO,则a+b的值为 .

18.如图所示是一条宽为1.5 m的直角走廊,现有一辆转 动灵活的手推车,其矩形平板面ABCD的宽AB为l m,若要想顺利推过 (不可竖起来或侧翻) 直角走廊,平板车的长AD不能超过 m.(精确到0.1,参考数据: ≈1.41, ≈1.73)

三、解答题 (共56分)

19.(本题6分) 把下列各数填入相应的大括号里.

π,2,- , ,2.3,30%, , .

(1) 整数集:{ };

(2) 有理数集:{ };

(3) 无理数集:{ }.

20.(本题6分) 如图,正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫作格点,以格点为顶点分别按下列要求画三角形 (涂上阴影).

(1) 在图1中,画一个三角形,使它的三边长都是有理数;

(2) 在图2、图3中,分别画两个不全等的直角三角形,使它的三边长都是无理数.

21.(本题8分) 计算下列各题.

(1) + - ; (2) -16 -4 ;

(3) - + ; (4) × -2( -π)0.

22.(本题6分)

(1) 已知 与 互为相反数,求(x-y)2的平方根;

(2) 已知 =6,b2=4,求 .

23.(本题6分) 求下列各式中x的值.

(1) 16x2-81=0; (2) -(x-2)3-64=0.

24.(本题5分) 设2+ 的整数部分和小数部分分别是x,y,试求x,y的值及x-1的算术平方根.

25.(本题6分) 车工小王加工生产了两根轴,当它把轴交给质检员验收时,质检员说:“不合格,作废!”小王不服气地说:“图纸要求精确到2.60 m,一根为2.56 m,另一根为2.62 m,怎么不合格?”

(1) 图纸要求精确到2.60 m,原轴的范围是多少?

(2) 你认为是小王加工的轴不合格,还是质检员故意刁难?

26.(本题6分) 在一平直河岸l的同侧有A,B两个村庄,A,B到l的距离AM,BN分别是3 km,2 km,且MN为3 km.现计划在河岸上建一抽水站P,用输水管向两个村庄A,B供水,求水管长度最少为多少.(精确到0.1 km)

27.(本题8分) 阅读下面的文字,解答问题:

大家知道 是无理数,而无理数是无限不循环小数,因此 的小数部分我们不可能全部写出来。

八年级上册数学试题及答案

一、选择题(每小题3分,共30分)在每小题给出的四个选项中,只有一项符合题目要求

1.一次函数y=3x+6的图象经过( )

A.第1、2、3象限 B.第2、3、4象限 C.第1、2、4象限 D.第1、3、4象限

考点:一次函数图象与系数的关系.

分析:根据一次函数的性质进行解答即可.

解答: 解:∵一次函数y=3x+6中.k=3>0,b=6>0,

∴此函数的图象经过一、二、三象限,

故选A

点评:本题考查的是一次函数的性质,即一次函数y=kx+b(k≠0)中,当k>0,b>0时函数的图象经过一、二、三象限.

2.在平面直角坐标系中.点P(1,﹣2)关于y轴的对称点的坐标是( )

A.(1,2) B.(﹣1,﹣2) C.(﹣1,2) D.(﹣2,1)

考点:关于x轴、y轴对称的点的坐标.

分析:直接利用关于y轴对称点的性质得出答案.

解答: 解:点P(1,﹣2)关于y轴的对称点的坐标是(﹣1,﹣2),

故选:B.

点评:此题主要考查了关于y轴对称点的性质,正确记忆横纵坐标关系是解题关键.

3.下列各式中,正确的是( )

A.3 =2 B.C. =5 D. =﹣5

考点:实数的运算.

专题:计算题.

分析:A、原式合并同类二次根式得到结果,即可做出判断;

B、原式化为最简二次根式,即可做出判断;

C、原式利用二次根式性质计算得到结果,即可做出判断;

D、原式利用二次根式性质计算得到结果,即可做出判断.

解答: 解:A、原式=2 ,错误;

B、原式=2 ,错误;

C、原式=|﹣5|=5,正确;

D、原式=|﹣5|=5,错误,

故选C

点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.

4.把不等式组 的解集表示在数轴上,下列选项正确的是( )

A.B.C.D.

考点:在数轴上表示不等式的解集.

分析:求得不等式组的解集为﹣1<x≤1,所以B是正确的.

解答: 解:由第一个不等式得:x>﹣1;

由x+2≤3得:x≤1.

∴不等式组的解集为﹣1<x≤1.

故选B.

点评:不等式组解集在数轴上的表示方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.

5.把方程x2﹣4x﹣6=0配方,化为(x+m)2=n的形式应为( )

A.(x﹣4)2=6 B.(x﹣2)2=4 C.(x﹣2)2=10 D.(x﹣2)2=0

考点:解一元二次方程-配方法.

专题:配方法.

分析:此题考查了配方法解一元二次方程,在把6移项后,左边应该加上一次项系数﹣4的一半的平方.

解答: 解:∵x2﹣4x﹣6=0,

∴x2﹣4x=6,

∴x2﹣4x+4=6+4,

∴(x﹣2)2=10.

故选C.

点评:配方法的一般步骤:

(1)把常数项移到等号的右边;

(2)把二次项的系数化为1;

(3)等式两边同时加上一次项系数一半的平方.

选择用配方法解一元二次方程时,使方程的二次项的系数为1,一次项的系数是2的倍数.

6.如图,在下列条件中,不能证明△ABD≌△ACD的是( )

A.BD=DC,AB=AC B.∠ADB=∠ADC,BD= DC

C.∠B=∠C,∠BAD=∠CAD D.∠B=∠C,BD=DC

考点:全等三角形的判定.

分析:全等三角形的判定定理有SAS,ASA,AAS,SSS,根据全等三角形的判定定理逐个判断即可.

解答: 解:A、∵在△ABD和△ACD中

∴△ABD≌△ACD(SSS),故本选项错误;

B、∵在△ABD和△ACD中

∴△ABD≌△ACD(SAS),故本选项错误;

C、∵在△ABD和△ACD中

∴△ABD≌△ACD(AAS),故本选项错误;

D、不符合全等三角形的判定定理,不能推出△ABD≌△ACD,故本选项正确;

故选D.

点评:本题考查了全等三角形的判定定理的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.

7.不等式x+2<6的正整数解有( )

A.1个 B.2个 C.3 个 D.4个

考点:一元一次不等式的整数解.

分析:首先利用不等式的基本性质解不等式,再从不等式的解集中找出适合条件的正整数即可.

解答: 解:不等式的解集是x<4,

故不等式 x+2<6的正整数解为1,2,3,共3个.

故选C.

点评:本题考查了一元一次不等式的整数解,正确解不等式,求出解集是解答本题的关键.解不等式应根据不等式的基本性质.

8.如图,在△ABC中,∠ACB=90°,D在BC上,E是AB的中点,AD、CE相交于F,且AD=DB.若∠B=20°,则∠DFE等于( )

A.30° B.40° C.50° D.60°

考点:直角三角形斜边上的中线;线段垂直平分线的性质.

分析:根据直角三角形斜边上中线性质得出BE=CE,根据等腰三角形性质得出∠ECB=∠B=20°,∠DAB=∠B=20°,根据三角形外角性质求出∠ADC=∠B+∠DAB=40°,根据∠三角形外角性质得出DFE=∠ADC+∠ECB,代入求出即可.

解答: 解:∵在△ABC中,∠ACB=90°,E是AB的中点,

∴BE=CE,

∵∠B=20°

∴∠ECB=∠B=20°,

∵AD=BD,∠B=20°,

∴∠DAB=∠ B=20°,

∴∠ADC=∠B+∠DAB=20°+20°=40°,

∴∠DFE=∠ADC+∠ECB=40°+20°=60°,

故选D.

点评:本题考查了等腰三角形的性质,三角形外角性质,直角三角形斜边上中线性质的应用,能求出∠ADC和∠ECB的度数是解此题的关键,注意:直角三角形斜边上的中线等于斜边的一半.

9.若关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,则k的取值范围是( )

A.k>﹣1 B.k>﹣1且k≠0 C.k<1 D.k<1且k≠0

考点:根的判别式.

专题:计算题.

分析:方程的根的情况,只要看根的判别式△=b2﹣4ac的值的符号就可以了.注意考虑“一元二次方程二次项系数不为0”这一条件.

解答: 解:因为方程kx2﹣2x﹣1=0有两个不相等的实数根,

则b2﹣4ac>0,即(﹣2)2﹣4k×(﹣1)>0,

解得k>﹣1.又结合一元二次方程可知k≠0,

故选:B.

点评:总结:一元二次方程根的情况与判别式△的关系:

(1)△>0⇔方程有两个不相等的实数根;

(2)△=0⇔方程有两个相等的实数根;

(3)△<0⇔方程没有实数根.

本题容易出现的错误是忽视k≠0这一条件.

10.一次长跑中,当小明跑了1600米时,小刚跑了1400米,小明、小刚在此后所跑的路程y(米)与时间t(秒)之间的函数关系如图,则这次长跑的全程为( )米.

A.2000米 B.2100米 C.2200米 D.2400米

考点:一次函数的应用.

分析:设小明的速度为a米/秒,小刚的速度为b米/秒,由行程问题的数量关系建立方程组求出其解即可.

解答: 解:设小明的速度为a米/秒,小刚的速度为b米/秒,由题意,得

解得: .

故这次越野跑的全程为:1600+300×2=2200米.

故选C.

点评:本题考查了行程问题的数量关系的运用,二元一次方程组的解法的运用,解答时由函数图象的数量关系建立方程组是关键.

二、填空题(每小题3分,共24分)

11.在Rt△ABC中,∠C=Rt∠,∠A=70°,则∠B=20°.

考点:直角三角形的性质.

分析:根据直角三角形两锐角互余列式计算即可得解.

解答: 解:∵∠C=Rt∠,∠A=70°,

∴∠B=90°﹣∠A=90°﹣70°=20°.

故答案为:20°.

点评:本题考查了直角三角形两锐角互余的性质,是基础题,熟记性质是解题的关键.

12.函数 中自变量x的取值范围是x≥5.

考点:函数自变量的取值范围.

分析:根据被开方数大于等于0列式计算即可得解.

解答: 解:由题意得,x﹣5≥0,

解得x≥5.

故答案为:x≥5.

点评:本题考查了函数自变量的范围,一般从三个方面考虑:

(1)当函数表达式是整式时,自变量可取全体实数;

(2)当函数表达式是分式时,考虑分式的分母不能为0;

(3)当函数表达式是二次根式时,被开方数非负.

13.边长为2的等边三角形的高为 .

考点:等边三角形的性质.

分析:作出一边上的高,利用勾股定理和等边三角形的性质可求得高.

解答: 解:如图,△ABC为等边三角形,过A作AD⊥BC,交BC于点D,

则BD= AB=1,AB=2,

在Rt△ABD中,由勾股定理可得:AD= = = ,

故答案为: .

点评:本题主要考查等边三角形的性质,掌握等边三角形“三线合一”的性质是解题的关键.

14.方程x2﹣6x+8=0的两个根是等腰三角形的底和腰,则这个等腰三角形周长是10.

考点:解一元二次方程-因式分解法;三角形三边关系;等腰三角形的性质.

分析:求等腰三角形的周长,即是确定等腰三角形的腰与底的长求周长.首先求出方程的根,再根据三角形三边关系定理列出不等式,确定是否符合题意.

解答: 解:解方程x2﹣6x+8=0,得x1=2,x2=4,

当2为腰,4为底时,不能构成等腰三角形;

当4为腰,2为底时,能构成等腰三角形,周长为4+4+2=10.

故答案为10.

点评:本题考查了解一元二次方程,从边的方面考查三角形,涉及分类讨论的思想方法.求三角形的周长,不能盲目地将三边长相加起来,而应养成检验三边长能否组成三角形的好习惯,把 不符合题意的舍去.

15.将一副三角尺如图所示叠放在一起,若AB=4cm,则阴影部分的面积是2cm2.

考点:解直角三角形.

分析:由于BC∥DE,那么△ACF也是等腰直角三角形,欲求其面积,必须先求出直角边AC的长;Rt△ABC中,已知斜边AB及∠B的度数,易求得AC的长,进而可根据三角形面积的计算方法求出阴影部分的面积.

解答: 解:∵∠B=30°,∠ACB=90°,AB=4cm,

∴AC=2cm.

由题意可知BC∥ED,

∴∠AFC=∠ADE=45°,

∴AC=CF=2cm.

故S△ACF= ×2×2=2(cm2).

故答案为:2.

点评:本题考查了相似三角形的判定和性质以及解直角三角形,发现△ACF是等腰直角三角形,并能根据直角三角形的性质求出直角边AC的长,是解答此题的关键.

16.将y=x的图象向上平移2个单位,平移后,若y>0,则x的取值范围是x>﹣2.

考点:一次函数图象与几何变换.

分析:首先得出平移后解析式,进而求出函数与坐标轴交点,即可得出y>0时,x的取值范围.

解答: 解:∵将y=x的图象向上平移2个单位,

∴平移后解析式为:y=x+2,

当y=0时,x=﹣2,

故y>0,则x的取值范围是:x>﹣2.

故答案为:x>﹣2.

点评:此题主要考查了一次函数图象与几何变换,正确得出平移后解析式是解题关键.

17.如图,Rt△ABC中,AB=9,BC=6,∠B=90°,将△ABC折叠,使A点与BC的中点D重合,折痕为MN,则线段BN的长为4.

考点:翻折变换(折叠问题).

分析:设BN=x,则由折叠的性质可得DN=AN=9﹣x,根据中点的定义可得BD=3,在Rt△BND中,根据勾股定理可得关于x的方程,解方程即可求解.

解答: 解:设BN=x,由折叠的性质可得DN=AN=9﹣x,

∵D是BC的中点,

∴BD=3,

在Rt△BND中,x2+32=(9﹣x)2,

解得x=4.

故线段BN的长为4.

故答案为:4.

点评:此题考查了翻折变换(折叠问题),折叠的性质,勾股定理,中点的定义以及方程思想,综合性较强.

18.已知过点(1,1)的直线y=ax+b(a≠0)不经过第四象限.设s=2a+b,则s的取值范围是0<s<3.

考点:一次函数图象与系数的关系.

分析:根据一次函数的性质进行解答即可.

解答: 解:∵一次函数y=ax+b经过一、二、三象限,不经过第四象限,且过点(1,1),

∴a>0,b≥0,a+b=1,

可得: ,

可得:0<a≤1,0<1﹣b≤1,

可得:0<a≤1,0≤b<1,

所以s=2a+b,可得:0<2a+b<3,

s的取值范围为:0<s<3,

故答案为:0<s<3.

点评:本题考查的是一次函数的性质,即一次函数y=kx+b(k≠0)中,当k>0,b>0时函数的图象经过一、二、三象限.

三、解答题(6小题、共46分)

19.如图,已知在△ABC中,∠A=120°,∠B=20°,∠C=40°,请在三角形的边上找一点P,并过点P和三角形的一个顶点画一条线段,将这个三角形分成两个等腰三角形.(要求两种不同的分法并写出每个等腰三角形的内角度数)

考点:作图—应用与设计作图.

分析:因为,∠A=120°,可以以A为顶点作∠BAP=20°,则∠PAC=100°,∠APC=40°,∴△APB,△APC都是等腰三角形;还可以以A为顶点作∠BAP=80°,则∠PAC=40°,∠APC=100°,∴△APB,△APC都是等腰三角形.

解答: 解:

给出一种分法得(角度标注 1分).

点评:此题主要考查等腰三角形的判定以及作一个角等于已知角的作法.

20.(1)解不等式:3x﹣2(1+2x)≥1

(2)计算:(+ ﹣6 )•

(3)解方程:2x2﹣4x﹣1=0.

考点:二次根式的混合运算;解一元二次方程-公式法;解一元一次不等式.

分析:(1)去括号、移项、合并同类项、系数化成1即可求解;

(2)首先对二次根式进行化简,然后利用乘法法则计算即可求解;

(3)利用求根公式即可直接求解.

解答: 解:(1)去括号,得3x﹣2﹣4x≥1

移项、合并同类项,得﹣x≥3

系数化成1得x≤﹣3;

(2)原式=

=

=6;

(3)∵a=2,b=﹣4,c=﹣1,

△=16+8=24,

∴x= = .

∴原方程有解为x1= ,x2= .

点评:本题考查的是二次根式的混合运算,在进行此类运算时,一般先把二次根式化为最简二次根式的形式后再运算.

21.如图,已知A(﹣1,0),B(1,1),把线段AB平移,使点B移动到点D(3,4)处,这时点A移动到点C处.

(1)写出点C的坐标(1,3);

(2)求经过C、D的直线与y轴的交点坐标.

考点:待定系数法求一次函数解析式;坐标与图形变化-平移.

分析:(1)根据网格结构找出点C、D的 位置,再根据平面直角坐标系写出点C的坐标;

(2)根据待定系数法确定解析式,即可求得与y轴的交点坐标.

解答: 解:(1)线段CD如图所示,C(1,3);

故答案为(1,3);

(2)解:设经过C、D的直线解析式为y=kx+b

C(1,3)、D(3,4)代入::

解得:k= b= ,

∴经过C、D的直线为y= x+ ,

令x=0,则y= ,

∴与y轴交点坐标为(0, ).

点评:本题考查了利用平移变换作图和待定系数法求解析式,熟练掌握网格结构准确找出对应点的位置是解题的关键.

22.如图,在△ABC中,∠C=2∠B,D是BC上的一点,且AD⊥AB,点E是BD的中点,连结AE.

(1)求证:∠AEC=∠C;

(2)若AE=6.5,AD=5,那么△ABE的周长是多少?

考点:勾股定理;直角三角形斜边上的中线.

分析:(1)首先利用直角三角形斜边上的中线等于斜边的一半可得AE=BE=ED,再根据等边对等角可得∠B=∠BAE,从而可得∠AEC=∠B+∠BAE=2∠B,再由条件∠C=2∠B可得结论;

(2)首先利用勾股定理计算出2AB的长, 然后可得答案.

解答: (1)证明:∵AD⊥AB,

∴△ABD为直角三角形,

又∵点E是BD的中点,

∴ ,

∴∠B=∠BAE,∠AEC=∠B+∠BAE=2∠B,

又∵∠C=2∠B,

∴∠AEC=∠C;

(2)解:在Rt△ABD中,AD=5,BD=2AE=2×6.5=13,

∴ ,

∴△ABE的周长=AB+BE+AE=12+6.5+6.5=25.

点评:此题主要考查了勾股定理,以及直角三角形的性质,关键是掌握在直角三角形中,斜边上的中线等于斜边的一半.

23.某商店需要购进一批电视机和洗衣机,根据市场调查,决定电视机进货量不少于洗衣机的进货量的一半.电视机与洗衣机的进价和售价如下表:

类别 电视机 洗衣机

进价(元/台) 1800 1500

售价(元/台) 2000 1600

计划购进电视机和洗衣机共100台,商店最多可筹集资金161800元.

(不考虑除进价之外的其它费用)

(1)如果商店将购进的电视机与洗衣机销售完毕后获得利润为y元,购进电视机x台,求y与x的函数关系式(利润=售价﹣进价)

(2)请你帮助商店算一算有多少种进货方案?

(3)哪种进货方案待商店将购进的电视机与洗衣机销售完毕后获得利润最多?并求出最多利润.

考点:一次函数的应用;一元一次不等式组的应用.

分析:(1)根据题意列出解析式即可;

(2)关键描述语:电视机进货量不少于洗衣机的进货量的一半,由此可用不等式将电视机和洗衣机的进货量表示出来,再根据商店最多可筹到的资金数可列不等式,求解不等式组即可;

(3)根据利润=售价﹣进价,列出关系式进行讨论可知哪种方案获利最多

解答: 解:(1)y=x+(1600﹣1500)(100﹣x)=100x+10000;

(2)设商店购进电视机x台,则购进洗衣机(100﹣x)台,

根据题意得 ,

解不等式组得 ≤x≤39 ,

∵x取整数,

∴x可以取34,35,36,37,38,39,

即购进电视机最少34台,最多39台,商店有6种进货方案;

(3)设商店销售完毕后获利为y元,根据题意得

y=x+(1600﹣1500)(100﹣x)=100x+10000.

∵100>0,

∴y随x增大而增大,

∴当x=39时,商店获利最多为13900元.

点评:此题考查一次函数应用,解决问题的关键是读懂题意,找到关键描述语,找到所求的量的等量关系.准确的解不 等式是需要掌握的基本计算能力,要熟练掌握利用自变量的取值范围求最值的方法.注意本题的不等关系为:电视机进货量不少于洗衣机的进货量的一半;电视机进货量不少于洗衣机的进货量的一半.

24.如图①所 示,直线L:y=mx+5m与x轴负半轴,y轴正半轴分别交于A、B两点.

(1)当OA=OB时,求点A坐标及直线L的解析式;

(2)在(1)的条件下,如图②所示,设Q为AB延长线上一点,作直线OQ,过A、B两点分别作AM⊥OQ于M,BN⊥OQ于N,若AM= ,求BN的长;

(3)当m取不同的值时,点B在y轴正半轴上运动,分别以OB、AB为边,点B为直角顶点在第一、二象限内作等腰直角△OBF和等腰直角△ABE,连EF交y轴于P点,如图③.

问:当点B在y轴正半轴上运动时,试猜想PB的长是否为定值?若是,请求出其值;若不是,说明理由.

考点:一次函数综合题.

分析:(1)当y=0时,x=﹣5;当x=0时,y=5m,得出A(﹣5,0),B(0,5m),由OA=OB,解得:m=1,即可得出直线L的解析式;

(2)由勾股定理得出OM的长,由AAS证明△AMO≌△ONB,得出BN=OM,即可求出BN的长;

(3)作EK⊥y轴于K点,由AAS证得△ABO≌△BEK,得出对应边相等OA=BK,EK=OB,得出EK=BF,再由AAS证明△PBF≌△PKE,得出PK=PB,即可得出结果.

解答: 解:(1)∵对于直线L:y=mx+5m,

当y=0时,x=﹣5,

当x=0时,y=5m,

∴A(﹣5,0),B(0,5m),

∵OA=OB,

∴5m=5,解得:m=1,

∴直线L的解析式为:y=x+5;

(2)∵OA=5,AM= ,

∴由勾股定理得:OM= = ,

∵∠AOM+∠AOB+∠BON=180°,∠AOB=90°,

∴∠AOM+∠BON=90°,

∵∠AOM+∠OAM=90°,

∴∠BON=∠OAM,

在△AMO和△OBN中, ,

∴△AMO≌ △ONB(AAS)

∴BN=OM= ;

(3)PB的长是定值,定值为 ;理由如下:

作EK⊥y轴于K点,如图所示:

∵点B为直角顶点在第一、二象限内作等腰直角△OBF和等腰直角△ABE,

∴AB=BE,∠ABE=90°,BO=BF,∠OBF=90°,

∴∠ABO+∠EBK=90°,

∵∠ABO+∠OAB=90°,

∴∠EBK=∠OAB,

在△ABO和△BEK中, ,

∴△ABO≌△BEK(AAS),

∴OA=BK,EK=OB,

∴EK=BF,

在△PBF和△PKE中, ,

∴△PBF≌△PKE(AAS),

∴PK=PB,

∴PB= BK= OA= ×5= .

点评:本题是一次函数综合题目,考查了一次函数解析式的求法、等腰直角三角形的性质、勾股定理、全等三角形的判定与性质等知识;本题综合性强,难度较大,特别是(3)中,需要通过作辅助线两次证明三角形全等才能得出结果.

初二上册全套试卷

#初二#导语: 检验数学学得好不好的标准就是会不会解题。听懂并记忆有关的定义、法则、公式、定理,只是学好数学的必要条件,能独立解题、解对题才是学好数学的标志。以下是整理的初二数学上册第一单元测试题【三篇】,希望对大家有帮助。

初二数学上册第一单元测试题(一)

一、选择(共30分)

1、如图,在Rt△ABC中,∠B=90°,BC=15,AC=17,以AB为直径作半圆,

则此半圆的面积为().

A.16πB.12πC.10πD.8π

2、三个正方形的面积如图(4),正方形A的面积为()

A.6B.36C.64D.8

3、14.在△ABC中,AB=13,AC=15,高AD=12,则BC的长为()

A.14B.14或4C.8D.4和8

4、将一根24cm的筷子,置于底面直径为15cm,高8cm的圆柱形水杯中,如图所示,

设筷子露在杯子外面的长度为hcm,则h的取值范围是().

A.h≤17cmB.h≥8cm

C.15cm≤h≤16cmD.7cm≤h≤16cm

5、若直角三角形的两条直角边长分别为3cm、4cm,则斜边上的高为()

A、cmB、cmC、5cmD、cm

6、以下列线段的长为三边的三角形中,不是直角三角形的是()

A、B、

C、D、

7、已知三角形的三边长为a、b、c,如果,则△ABC是()

A.以a为斜边的直角三角形B.以b为斜边的直角三角形

C.以c为斜边的直角三角形D.不是直角三角形

8、如果把直角三角形的两条直角边同时扩大到原来的2倍,那么斜边扩大到原来的().

A.1倍B.2倍C.3倍D.4倍

9、2002年8月在北京召开的国际数学家大会会徽取材于我国古代数学家赵爽的《勾股圆方图》,它是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形,如图所示,如果大正方形的面积是13,小正方形的面积是1,直角三角形的短直角边为a,较长直角边为b,那么(a+b)2的值为()

A.13B.19C.25D.169

10、如图,长方体的长为15,宽为10,高为20,点离点的距离为5,一只蚂蚁如果要沿着长方体的表面从点爬到点,需要爬行的最短距离是()

A.B.25C.D.

二、填空(共24分)

11、一个三角形三个内角之比为1:2:3,则此三角形是__________三角形;

若此三角形的三边为a、b、c,则此三角形的三边的关系是__________。

八年级上册数学主要内容

在七年级数学期末的考试道路上,学习没有止境,每天学习进步一点点,数学期末考试就会成功!下面由我为你整理的初二数学上册期末检测试题,希望对大家有帮助!

初二数学上册期末检测试题

一、选择题(每小题3分,共36分)

1. 的相反数和绝对值分别是()

A. B. C. D.

2.如果 和 互为相反数,且 ,那么 的倒数是( )

A. B. C. D.

3.(2016•湖南长沙中考)下列各图中,∠1与∠2互为余角的是( )

A B C D

4.(2016•北京中考改编)有理数a,b在数轴上的对应点的位置如图所示,则正确的结论

是( )

第4题图

A.a>-2 B.a<-3 C.a>-b D.a<-b

5.已知有一整式与 的和为 ,则此整式为()

A. B. C. D.

6.(2016•吉林中考)小红要购买珠子串成一条手链.黑色珠子每个a元,白色珠子每个b元,要串成如图所示的手链,小红购买珠子应该花费( )

A.(3a+4b)元 B.(4a+3b)元 C.4(a+b)元 D.3(a+b)元

第6题图

7.(2015•河北中考)图中的三视图所对应的几何体是()

C. D. 第7题图

8.(2015•吉林中考)如图,有一个正方体纸巾盒,它的平面展开图是()

第8题图

9.2条直线最多有1个交点,3条直线最多有3个交点,4条直线最多有6个交点,…,那么6条直线最多有( )

A.21个交点 B.18个交点

C.15个交点 D.10个交点

10.如图,直线 和 相交于 点, 是直角, 平分 , ,则 的大小为( )

A. B. C. D.

11.(2015•山东泰安中考)如图,AB∥CD,∠1=58°,FG平分∠EFD,则∠FGB的度数等于( )

A.122° B.151° C.116° D.97°

12. (2015•山西中考)如图,直线a∥b,一块含60°角的直角三角板ABC(∠A=60°)按如图所示放置.若∠1=55°,则∠2的度数为( )

A.105° B.110°

C.115° D.120°

二、填空题(每小题3分,共24分)

13.如果 的值与 的值互为相反数,那么 等于_____.

14.足球比赛的记分规则是:胜一场得3分,平一场得1分,负一场得0分.一队打14场,负5场,共得19分,那么这个队共胜了_____场.

15.一个两位数,个位数字和十位数字之和为10,个位数字为 ,用代数式表示这个两位数 是.

16.定义 ,则 _______.

17.当 时,代数式 的值为 ,则当 时,代数式 _____.

18.若关于 的多项式 中不含有 项,则 _____.

19.(2016•江苏连云港中考)如图,直线AB∥CD,BC平分∠ABD,若∠1=54°,则∠2= .

20.如图,已知点 是直线 上一点,射线 分别是 的平分线,若 则 _________, __________.

三、解答题(共60分)

21.(8分)已知 互为相反数, 互为倒数, 的绝对值是 ,求 的值.

22.(8分)给出三个多项式: ,请选择你最喜欢的两个多项式进行加法运算并分解因式,并求当x=-2时该式的结果.

23.(10分)如图,直线 分别与直线 相交于点 ,与直线 相交于点 .

若∠1=∠2,∠3=75°,求∠4的度数.

第23题图 第24题图

24.(10分)如图, , , 交AB于 .问 与 有什么关系?请说明理由.

25.(12分)如图, 于点 , 于点 , .请问: 平分 吗?若平分,请说明理由.

第26题图

第25题图

26.(12分)如图,已知点 在同一直线上, 分别是AB,BC的中点.

(1)若 , ,求 的长;

(2)若 , ,求 的长;

(3)若 , ,求 的长;

(4)从(1)(2)(3)的结果中能得到什么结论?

初二数学上册期末检测试题参考答案

1.B 解析: 的相反数是 , ,故选B.

2.A 解析:因为 和 互为相反数,所以 ,故 的倒数是 .

3.B 解析:A:根据对顶角相等,以及“两直线平行,同位角相等”可得∠1=∠2;B:∵ 三角形的内角和为180°,∴ ∠1+∠2=90°,即∠1与∠2互为余角;C:∵ ∠1与∠2是对顶角,∴ ∠1=∠2;D:∵ ∠1+∠2=180°, ∴ ∠1与∠2互补.故选B.

4.D 解析:观察数轴可得-3

观察数轴还可得1

故选项C错误,选项D正确.

规律:利用数轴可以比较任意两个实数的大小,即在数轴上表示的两个实数,右边的总比左边的大;在原点左侧,绝对值大的反而小.

5.B 解析: ,故选B.

6.A 解析:因为图示手链有3个黑色珠子,4个白色珠子,而每个黑色珠子a元,每个白色珠子b元,所以总花费=(3a+4b)元,所以选A.

7.B 解析:主视图、左视图、俯视图是分别从物体正面、左面和上面看所得到的平面图形,由于主视图为 ,故A,C,D三选项错误,选项B正确.

8.B 解析:因为选项A折成正方体后,圆圈与“纸巾”所在的面是相对的,所以A错误;

选项B折成正方体后,圆圈与“纸巾”所在的面相邻且位置关系正确;

选项C折成正方体后,圆圈与“纸巾”所在的面相邻但位置关系不正确;

选项D折成正方体后,圆圈与“纸巾”所在的面相邻但位置关系不正确.因此B正确.

9.C 解析:由题意,得n条直线的交点个数最多为 (n取正整数且n≥2),故6条直线最多有 =15(个)交点.

10.A 解析:因为 是直角,

所以

又因为 平分 ,所以

因为 所以

所以 .

11.B 解析:根据两直线平行,同位角相等可得∠EFD=∠1=58°.

由FG平分∠EFD可得∠GFD=29°.

由两直线平行,同旁内角互补,得∠FGB=180°-∠GFD=180°-29°=151°.

12.C 解析:如图所示,设∠1的对顶角是∠3,

∴ ∠1=∠3=55°.

又∵ ∠A+∠3+∠4=180°,∠A=60°,

∴ ∠4=65°.

∵ ∠4和∠5是对顶角,∴ ∠5=65°.

∵ a∥b,∴ ∠5+∠2=180°,∴ ∠2=115°. 第12题答图

13. 解析:根据题意,得 ,解得 .

14.5 解析:设共胜了 场.由题意,得 ,解得

15.100-9 解析:10×(10- )+ =100-9 .

16. 解析:根据题意可知,(1※2)※3=(1-2)※3=(﹣1)※3=1-3=﹣2.

17.7 解析:因为当 时, ,所以 ,即 .

所以当 时, .

18. 解析: ,

由于多项式中不含有 项,故 ,所以 .

19.72° 解析:∵ AB∥CD,∠1=54°,

∴ ∠ABC=∠1=54°,∠ABD+∠BDC=180°.

∵ BC平分∠ABD,

∴ ∠ABD=2∠ABC=2×54°=108°,

∴ ∠BDC=180°-∠ABD=180°-108°=72°.

∵ ∠2与∠BDC是对顶角,

∴ ∠2=∠BDC=72°.

点拨:两直线平行,同位角相等,同旁内角互补.

20. 解析:因为

所以

因为 是 的平分线, ,

所以

所以

因为 是 的平分线,

所以

21.解:由已知可得, , , .

当 时, ;

当 时, .

22.解:情况一: 当x=-2时,x(x+6)=-8;

情况二: 当x=-2时,(x+1)(x-1)=3;

情况三: 当x=-2时,(x+1)2 =1.

23.解:因为 ,所以 ∥ ,

所以∠4=∠3=75°(两直线平行,内错角相等).

24.解: .理由如下:

因为 ,所以 ∥ ,所以 .

又因为 ,所以 ,故 ∥ .

因为 ,所以 .

25.解:平分.理由如下:

因为 于 , 于 (已知),

所以 (垂直的定义),

所以 ∥ (同位角相等,两直线平行),

所以 (两直线平行,内错角相等), (两直线平行,同位角相等).

又因为 (已知),所以 (等量代换).

所以 平分 (角平分线的定义).

26.解:(1)因为点 在同一直线上, 分别是AB,BC的中点,

所以 .

而MN=MB-NB,AB=20,BC=8,

所以MN= .

(2)根据(1)得 .

(3)根据(1)得

(4)从(1)(2)(3)的结果中能得到线段MN始终等于线段 的一半,与 点的位置无关.

以上就是八年级上册数学试题的全部内容,(2) 你认为是小王加工的轴不合格,还是质检员故意刁难?26.(本题6分) 在一平直河岸l的同侧有A,B两个村庄,A,B到l的距离AM,BN分别是3 km,2 km,且MN为3 km.现计划在河岸上建一抽水站P。

猜你喜欢