目录名校考题八年级上数学 八年级上册名校考题数学答案 八年级下册数学名校考题答案 名校考题答案八年级上 名校考题八上数学人教版
说明:1、本试卷满分为150分,考试时间100分钟;试卷共7页,有三大题,26小题。
2、答题时,允许使用计算器。
题号 一 二 三 总分
19 20 21 22 23 24 25 26
得分
一、选择题(每小题有且只有一个答案正确,每小题4分,共40分)
1、如图,两直线a‖b,与∠1相等的角的个数为()
A、1个 B、2个 C、3个 D、4个
2、不等式组 的解集是()
A、 B、 C、 D、无解
3、如果 ,那么手世耐下列各式中正确的是()
A、 B、 C、 D、
4、如图所示,由∠D=∠C,∠BAD=∠ABC推得△ABD≌△BAC,所用的
的判定定理的简称是()
A、AASB、ASAC、SASD、SSS
5、已知一组数据1,7,10,8,x,6,0,3,若 =5,则x应等于()
A、6B、5 C、4D、2
6、下列说法错误的是()
A、长方体、正方体都是棱柱;B、三棱住的侧面是三角形;
C、六棱住有毕春六个侧面、侧面为长方形;D、球体的三种视图均为同样大小的图形;
7、△ABC的三边为a、b、c,且 ,则()
A、△ABC是锐角三角形; B、c边的对角是直角;
C、△ABC是钝角三角形; D、a边的对角是直角;
8、为筹备班级的初中毕业联欢会,班长对全班学生爱吃哪几种水果作了民意调查,那么最终买什么水果,下面的调查数据中最值得关注的是()
A、中位数;B、平均数; C、众数;D、加权平均数;
9、如右图,有三个大小一样的正方体,每个正方体的六个面上都按
照相同的顺序,依次标有1,2,3,4,5,6这六个数字返纳,并且把标
有“6”的面都放在左边,那么它们底面所标的3个数字之和等于()
A、8B、9C、10D、11
10、为鼓励居民节约用水,北京市出台了新的居民用水收费标准:(1)若每月每户居民用水不超过4立方米,则按每立方米2米计算;(2)若每月每户居民用水超过4立方米,则超过部分按每立方米4.5米计算(不超过部分仍按每立方米2元计算)。现假设该市某户居民某月用水x立方米,水费为y元,则y与x的函数关系用图象表示正确的是()
二、填空题(每小题4分,共32分)
11、不等式 的解集是__________________;
12、已知点A在第四象限,且到x轴,y轴的距离分别为3,5,则A点的坐标为_________;
13、为了了解某校初三年级400名学生的体重情况,从中抽查了50名学生的体重进行统计分析,在这个问题中,总体是指__________________________________;
14、某班一次体育测试中得100分的有4人,90分的有11人,80分的有11人,70分的有8人,60分的有5人,剩下的8人一共得了300分,则中位数是_____________。
15、如图,已知∠B=∠DEF,AB=DE,请添加一个条件使△ABC≌△DEF,则需添加的条件是__________;
16、如图,AD和BC相交于点O,OA=OD,OB=OC,若∠B=40°,∠AOB=110°,则∠D=________度;
17、弹簧的长度y(cm)与所挂物体的质量x (kg)的关系是一次函数,
图象如右图所示,则弹簧不挂物体时的长度是___________cm;
第15题图第16题图第17题图
18、如下图所示,图中是一个立体图形的三视图,请你根据视图,说出立体图形的名称:
对应的立体图形是________________的三视图。
三、解答题(共78分)
19、(8分)解不等式 ,并把解集在数轴上表示出来。
20、(8分)填空(补全下列证明及括号内的推理依据):
如图:已知:AD⊥BC于D,EF⊥BC于F,∠1=∠3,
求证:AD平分∠BAC。
证明:∵AD⊥BC,EF⊥BC于F(已知)
∴AD‖EF( )
∴∠1=∠E()
∠2=∠3()
又∵∠3=∠1(已知)
∴∠1=∠2(等量代换)
∴AD平分∠BAC( )
21、画出下图的三视图(9分)
22、(9分)已知点A(10,0),B(10,8),C(5,0),D(0,8),E(0,0),请在下面的平面直角坐标系中,
(1)分别描出A、B、C、D、E五个点,并顺
次连接这五个点,观察图形像什么字母;
(2)要图象“高矮”不变,“胖瘦”变为原来
图形的一半,坐标值应发生怎样的变化?
23、(10分)如图,lA,lB分别表示A步行与B骑车在同一路上行驶的路程S与时间t的关系。
(1)B出发时与A相距_________千米。
(2)走了一段路后,自行车发生故障,进行修理,
所用的时间是______________小时。
(3)B出发后_________小时与A相遇。
(4)若B的自行车不发生故障,保持出发时的速度
前进,几小时与A相遇,相遇点离B的出发点多少千
米。在图中表示出这个相遇点C,并写出过程。
24、(10分)已知:如图,RtABC≌Rt△ADE,∠ABC=∠ADE=90°,试以图中标有字母的点为端点,连结两条线段,如果你所连结的两条线段满足相等、垂直或平行关系中的一种,那么请你把它写出来并说明理由。
25、(10分)某工厂有甲、乙两条生产线,在乙生产线投产前,甲生产线已生产了200吨成品,从乙生产线投产开始,甲、乙两条生产线每天生产20吨和30吨成品。
(1)分别求出甲、乙两条生产线投产后,各自的总产量y(吨)与从乙开始投产以后所用时间x(天)之间的函数关系式,并求出第几天结束时,甲、乙两条生产线的总产量相同;
(2)在如图所示的直角坐标系中,作出上述两个函数和第一象限内的图象,并观察图象,分别指出第15天和第25天结束时,哪条生产线的总产量高?
26、(14分) (1)为保护环境,某校环保小组成员小敏收集废电池,第一天收集1号电池4节、5号电池5节,总重量460克;第二天收集1号电池2节、5号电池3节,总重量240克。
① 求1号和5号电池每节分别重多少克?
② 学校环保小组为估算四月份收集废电池的总重量,他们随意抽取了该月腜 5天每天收集废电池的数量,如下表:
1号废电池(单位:节) 29 30 32 28 31
5号废电池(单位:节) 51 53 47 49 50
分别计算两种电池的样本平均数,并由此估算该月(30天)环保小组收集废电池的总重量是多少千克?
(2)如图,用正方体石墩垒石梯,下图分别表示垒到一、二、三阶梯时的情况,那么照这样垒下去,
①填出下表中未填的两空,观察规律。
阶梯级数 一级 二级 三级 四级
石墩块数 3 9
② 垒到第n级阶梯时,共用正方体石墩________________块(用含n的代数式表示)。
参考答案及评分标准
一、选择题(每小题有且只有一个答案正确,每小题4分,共40分)
1、C;2、A;3、D;4、A;5、B;6、B;7、D;8、C;9、A;10、C;
二、填空题(每小题4分,共32分)
11、 ;12、 ;13、某校初三年级400名学生体重情况的全体;14、80分
15、BC=EF(答案不唯一);16、30;17、9;18、四棱锥或五面体;
三、解答题(共78分)
19、解:
……………………………………(2分)
……………………………………(1分)
……………………………………(1分)
……………………………………(2分)
数轴表示正确2分;
20、证明:∵AD⊥BC,EF⊥BC于F(已知)
∴AD‖EF(同位角相等,两直线平等或在同一平面内,垂直于同一条干线的两条直线平行)
∴∠1=∠E(两条直线平行,同位角相等)
∠2=∠3(两条直线平行,内错角相等)
又∵∠3=∠1(已知)
∴∠1=∠2(等量代换)
∴AD平分∠BAC(角平分线的定义)
每空2分,共8分;
21、图形如下,每个3分,共9分;
主视图左视图俯视图
22、图形略,(3分)
(1)像字母M;(2分)
(2)横坐标变为原来的一半,纵坐标不变;(4分)
23、(1)10;(2)1;(3)3;………………………………………………(每题1分)
(4)解:表示出相遇点C得1分;
求出lA的函数关系式: …………………………2分
求出 的函数关系: …………………………………2分
解得 ………………………………………………………1分
……………………………………………………1分
24、解:有不同的情况,图形画正确,并且结论也正确的即可给2分;
(1)连结CD、EB,则有CD=EB;
(2)连结AF、BD,则有AF⊥BD;
(3)连结BD、EC,则有BD‖EC;
选(1);
证明:∵Rt△ABC≌Rt△ADE(已知)
∴AC=AE,AD=AB(全等三角形对应边相等)
∠CAB=∠EAB(全等三角形对应角相等)…………………………3分
∴
即: …………………………………………………2分
∴在△ADC和△ABE中:
∵
∴△ADC≌△ABE(SAS)……………………………………………2分
∴CD=EB……………………………………………………………1分
25、(1)解得: …………………………2分
………………………………2分
两者总生产量相等,即:
∴
解得: …………………………………2分
(2)图形略,……………………………………2分
第15天结束,甲的总生产量大于乙的总生产量;……………………1分
第25天结束时,乙的总生产量大于甲的总生产量;…………………1分
26、解:(1)①设1号电池每节重量为x克,5号电池每节重量为y克;
由题意可得: ……………………………………2分
解得: , ……………………………………………1分
答:1号电池每节重量为90克,5号电池每节重量为20克;………………1分
②求得1号电池平均每天30节,5号电池平均每天50节,…………………2分
所以总重量=
=111(千克)……………………………………………………2分
(2)18,30, …………………………………第一个空1分,第二个空2分,第三空3分;
2012~2013学年度第一学期期末考试初二数学(基础卷)2
姓名:
一、选择题
C.对角线互相平分
D.对角互补
5
小亮从家中出发,到离家12千米的早餐店吃早餐,用了一刻钟吃完早餐后,按原路返回到离家1千米的学校上课,在下列图象中,能反映这一过程的大致图象是(
)
A.
B.
C.
D.
6
如图,在△ABC中,DE垂直平分AB,点E为垂足,FG垂直平分AC,点世圆姿G为垂足,BC=5cm,则△ADF的周长等于
(
)
A4cm;
B5cm;
C6cm;
D7cm
7
关于正方形性质的描述:①既是轴腔或对称图形,也是中心对称图形;②对边平行且相等,四条边相等;③四个角相等,且都等于900;④对角线互相垂直、平分搜绝且相等,每一条对角线都平分一组对角;⑤若正方形的对角线长为2,则它的面积为2其中说法正确的有
一切知识都源于无渗银知,一切无知都源于对知识的认知。最根深蒂固的无知,不是对知识的无知,而是对自己无知的无知。下面给大家分享一些关于初二数学试卷及答案解析,希望对大家有所帮助。
一、选择题(每小题3分,9小题,共27分)
1.下列图形中轴对称图形的个数是()
A.1个B.2个C.3个D.4个
【考点】轴对称图形.
【分析】根据轴对称图形的概念求解.
【解答】解:由图可得,第一个、第二个、第三个、第四个均为轴对称图形,共4个.
故选D.
【点评】本题考查了轴对称图形,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.
2.下列运算不正确的是()
A.x2?x3=x5B.(x2)3=x6C.x3+x3=2x6D.(﹣2x)3=﹣8x3
【考点】幂的乘方与积的乘方;合并同类项;同底数幂的乘法.
【分析】本题考查的知识点有同底数幂乘法法则,幂的乘方法则,合并同类项,及积的乘方法则.
【解答】解:A、x2?x3=x5,正确;
B、(x2)3=x6,正确;
C、应为x3+x3=2x3,故本选项错误;
D、(﹣2x)3=﹣8x3,正确.
故选:C.
【点评】本题用到的知识点为:
同底数幂的乘法法则:底数不变,指数相加;
幂的乘方法则为:底数不变,指数相乘;
合并同类项,只需把系数相加减,字母和字母的指数不变;
积的乘方,等于把积中的每一个因式分别乘方,再把所得的幂相乘.
3.下列关于分式的判断,正确的是()
A.当x=2时,的值为零
B.无论x为何值,的值总为正数
C.无论x为何值,不可能得整数值
D.当x≠3时,有意义
【考点】分式的值为零的条件;分式的定义;分式有意义的条件.
【分析】分式有意义的条件是分母不等于0.
分式值是0的条件是分子是0,分母不是0.
【解答】解:A、当x=2时,分母x﹣2=0,分式无意义,故A错误;
B、分母中x2+1≥1,因而第二个式子一定成立,故B正确;
C、当x+1=1或﹣1时,的值是整数,故C错误;
D、当x=0时,分母x=0,分式无意义,故D错误.
故选B.
【点评】分式的值是正数的条件是分子、分母同号,值是负数的条件是分子、分母异号.
4.若多项式x2+mx+36因式分解的结果是(x﹣2)(x﹣18),则m的值是()
A.﹣20B.﹣16C.16D.20
【考点】因式分解-十字相乘法等.
【专题】计算题.
【分析】把分解因式的结果利用多项式乘以多项式法则计算,利用多项式相等的条件求出m的值即可.
【解答】解:x2+mx+36=(x﹣2)(x﹣18)=x2﹣20x+36,
可得m=﹣20,
故选A.
【点评】此题考查了因式分解﹣十字相乘法,熟练掌握十字相乘的方法是解本题的关键.
5.若等腰三角形的周长为26cm,一边为11cm,则腰长为()
A.11cmB.7.5cmC.11cm或7.5cmD.以上都不对
【考点】等腰三角形的性质.
【分析】分边11cm是腰长与底边两种情况讨论求解.
【解答】解:①11cm是腰长时,腰长为11cm,
②11cm是底边时,腰长=(26﹣11)=7.5cm,
所以,腰长是11cm或7.5cm.
故选C.
【点评】本题考查了等腰三角形的性质,难点在于要分情况讨论.
6.如图,在△ABC中,AB=AC,∠BAC=108°,点D在BC上,且BD=AB,连接AD,则∠CAD等于()
A.30°B.36°C.38°D.45°
【考点】等腰三角形的性质.
【分析】根据等腰三角形两底角相等求出∠B,∠BAD,然后根据∠CAD=∠BAC﹣∠BAD计算即可得解.
【解答】解:∵AB=AC,∠BAC=108°,
∴∠B=(180°﹣∠BAC)=(180°﹣108°)=36°,
∵BD=AB,
∴∠BAD=(180°﹣∠B)=(180°﹣36°)=72°,
∴∠CAD=∠BAC﹣∠BAD=108°﹣72°=36°.
故选B.
【点评】丛族宴本题考查了等腰三角形的性质,主要利穗咐用了等腰三角形两底角相等,等边对等角的性质,熟记性质并准确识图是解题的关键.
7.如下图,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,不正确的等式是()
A.AB=ACB.∠BAE=∠CADC.BE=DCD.AD=DE
【考点】全等三角形的性质.
【分析】根据全等三角形的性质,全等三角形的对应边相等,全等三角形的对应角相等,即可进行判断.
【解答】解:∵△ABE≌△ACD,∠1=∠2,∠B=∠C,
∴AB=AC,∠BAE=∠CAD,BE=DC,AD=AE,
故A、B、C正确;
AD的对应边是AE而非DE,所以D错误.
故选D.
【点评】本题主要考查了全等三角形的性质,根据已知的对应角正确确定对应边是解题的关键.
8.计算:(﹣2)2015?()2016等于()
A.﹣2B.2C.﹣D.
【考点】幂的乘方与积的乘方.
【分析】直接利用同底数幂的乘法运算法则将原式变形进而求出答案.
【解答】解:(﹣2)2015?()2016
=[(﹣2)2015?()2015]×
=﹣.
故选:C.
【点评】此题主要考查了积的乘方运算以及同底数幂的乘法运算,正确掌握运算法则是解题关键.
9.如图,直线a、b相交于点O,∠1=50°,点A在直线a上,直线b上存在点B,使以点O、A、B为顶点的三角形是等腰三角形,这样的B点有()
A.1个B.2个C.3个D.4个
【考点】等腰三角形的判定.
【分析】根据△OAB为等腰三角形,分三种情况讨论:①当OB=AB时,②当OA=AB时,③当OA=OB时,分别求得符合的点B,即可得解.
【解答】解:要使△OAB为等腰三角形分三种情况讨论:
①当OB=AB时,作线段OA的垂直平分线,与直线b的交点为B,此时有1个;
②当OA=AB时,以点A为圆心,OA为半径作圆,与直线b的交点,此时有1个;
③当OA=OB时,以点O为圆心,OA为半径作圆,与直线b的交点,此时有2个,
1+1+2=4,
故选:D.
【点评】本题主要考查了坐标与图形的性质及等腰三角形的判定;分类讨论是解决本题的关键.
二、填空题(共10小题,每小题3分,满分30分)
10.计算(﹣)﹣2+(π﹣3)0﹣23﹣|﹣5|=4.
【考点】实数的运算;零指数幂;负整数指数幂.
【专题】计算题;实数.
【分析】原式第一项利用负整数指数幂法则计算,第二项利用零指数幂法则计算,第三项利用乘方的意义化简,最后一项利用绝对值的代数意义化简,计算即可得到结果.
【解答】解:原式=16+1﹣8﹣5=4,
故答案为:4
【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.
11.已知a﹣b=14,ab=6,则a2+b2=208.
【考点】完全平方公式.
【分析】根据完全平方公式,即可解答.
【解答】解:a2+b2=(a﹣b)2+2ab=142+2×6=208,
故答案为:208.
【点评】本题考查了完全平方公式,解决本题德尔关键是熟记完全平方公式.
12.已知xm=6,xn=3,则x2m﹣n的值为12.
【考点】同底数幂的除法;幂的乘方与积的乘方.
【分析】根据同底数幂的除法法则:底数不变,指数相减,进行运算即可.
【解答】解:x2m﹣n=(xm)2÷xn=36÷3=12.
故答案为:12.
【点评】本题考查了同底数幂的除法运算及幂的乘方的知识,属于基础题,掌握各部分的运算法则是关键.
13.当x=1时,分式的值为零.
【考点】分式的值为零的条件.
【分析】分式的值为0的条件是:(1)分子为0;(2)分母不为0.两个条件需同时具备,缺一不可.据此可以解答本题.
【解答】解:x2﹣1=0,解得:x=±1,
当x=﹣1时,x+1=0,因而应该舍去.
故x=1.
故答案是:1.
【点评】本题考查了分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.
14.(1999?昆明)已知一个多边形的内角和等于900°,则这个多边形的边数是7.
【考点】多边形内角与外角.
【分析】根据多边形的内角和计算公式作答.
【解答】解:设所求正n边形边数为n,
则(n﹣2)?180°=900°,
解得n=7.
故答案为:7.
【点评】本题考查根据多边形的内角和计算公式求多边形的边数,解答时要会根据公式进行正确运算、变形和数据处理.
15.如图,在ABC中,AP=DP,DE=DF,DE⊥AB于E,DF⊥AC于F,则下列结论:
①AD平分∠BAC;②△BED≌△FPD;③DP∥AB;④DF是PC的垂直平分线.
其中正确的是①③.
【考点】全等三角形的判定与性质;角平分线的性质;线段垂直平分线的性质.
【专题】几何图形问题.
【分析】根据角平分线性质得到AD平分∠BAC,由于题目没有给出能够证明∠C=∠DPF的条件,无法根据全等三角形的判定证明△BED≌△FPD,以及DF是PC的垂直平分线,先根据等腰三角形的性质可得∠PAD=∠ADP,进一步得到∠BAD=∠ADP,再根据平行线的判定可得DP∥AB.
【解答】解:∵DE=DF,DE⊥AB于E,DF⊥AC于F,
∴AD平分∠BAC,故①正确;
由于题目没有给出能够证明∠C=∠DPF的条件,只能得到一个直角和一条边对应相等,故无法根据全等三角形的判定证明△BED≌△FPD,以及DF是PC的垂直平分线,故②④错误;
∵AP=DP,
∴∠PAD=∠ADP,
∵AD平分∠BAC,
∴∠BAD=∠CAD,
∴∠BAD=∠ADP,
∴DP∥AB,故③正确.
故答案为:①③.
【点评】考查了全等三角形的判定与性质,角平分线的性质,线段垂直平分线的性质,等腰三角形的性质和平行线的判定,综合性较强,但是难度不大.
16.用科学记数法表示数0.0002016为2.016×10﹣4.
【考点】科学记数法—表示较小的数.
【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
【解答】解:0.0002016=2.016×10﹣4.
故答案是:2.016×10﹣4.
【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.
17.如图,点A,F,C,D在同一直线上,AF=DC,BC∥EF,要判定△ABC≌△DEF,还需要添加一个条件,你添加的条件是EF=BC.
【考点】全等三角形的判定.
【专题】开放型.
【分析】添加的条件:EF=BC,再根据AF=DC可得AC=FD,然后根据BC∥EF可得∠EFD=∠BCA,再根据SAS判定△ABC≌△DEF.
【解答】解:添加的条件:EF=BC,
∵BC∥EF,
∴∠EFD=∠BCA,
∵AF=DC,
∴AF+FC=CD+FC,
即AC=FD,
在△EFD和△BCA中,
∴△EFD≌△BCA(SAS).
故选:EF=BC.
【点评】此题主要考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.
注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.
18.若x2﹣2ax+16是完全平方式,则a=±4.
【考点】完全平方式.
【分析】完全平方公式:(a±b)2=a2±2ab+b2,这里首末两项是x和4这两个数的平方,那么中间一项为加上或减去x和4积的2倍.
【解答】解:∵x2﹣2ax+16是完全平方式,
∴﹣2ax=±2×x×4
∴a=±4.
【点评】本题是完全平方公式的应用,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.
19.如图,已知∠MON=30°,点A1,A2,A3,…在射线ON上,点B1,B2,B3,…在射线OM上,△A1B1A2,△A2B2A3,△A3B3A4,…均为等边三角形,若OA2=4,则△AnBnAn+1的边长为2n﹣1.
【考点】等边三角形的性质.
【专题】规律型.
【分析】根据等腰三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3,以及A2B2=2B1A2,得出A3B3=4B1A2=8,A4B4=8B1A2=16,A5B5=16B1A2…进而得出答案.
【解答】解:∵△A1B1A2是等边三角形,
∴A1B1=A2B1,
∵∠MON=30°,
∵OA2=4,
∴OA1=A1B1=2,
∴A2B1=2,
∵△A2B2A3、△A3B3A4是等边三角形,
∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,
∴A2B2=2B1A2,B3A3=2B2A3,
∴A3B3=4B1A2=8,
A4B4=8B1A2=16,
A5B5=16B1A2=32,
以此类推△AnBnAn+1的边长为2n﹣1.
故答案为:2n﹣1.
【点评】本题主要考查等边三角形的性质及含30°角的直角三角形的性质,由条件得到OA5=2OA4=4OA3=8OA2=16OA1是解题的关键.
三、解答题(本大题共7小题,共63分)
20.计算
(1)(3x﹣2)(2x+3)﹣(x﹣1)2
(2)(6x4﹣8x3)÷(﹣2x2)﹣(3x+2)(1﹣x)
【考点】整式的混合运算.
【分析】(1)利用多项式乘多项式的法则进行计算;
(2)利用整式的混合计算法则解答即可.
【解答】解:(1)(3x﹣2)(2x+3)﹣(x﹣1)2
=6x2+9x﹣4x﹣6﹣x2+2x﹣1
=5x2+7x﹣7;
(2)(6x4﹣8x3)÷(﹣2x2)﹣(3x+2)(1﹣x)
=﹣3x2+4x﹣3x+3x2﹣2+2x
=3x﹣2.
【点评】本题考查了整式的混合计算,关键是根据多项式乘多项式的法则:先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.
21.分解因式
(1)a4﹣16
(2)3ax2﹣6axy+3ay2.
【考点】提公因式法与公式法的综合运用.
【分析】(1)两次利用平方差公式分解因式即可;
(2)先提取公因式3a,再对余下的多项式利用完全平方公式继续分解.
【解答】解:(1)a4﹣16
=(a2+4)(a2﹣4)
=(a2+4)(a+2)(a﹣2);
(2)3ax2﹣6axy+3ay2
=3a(x2﹣2xy+y2)
=3a(x﹣y)2.
【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.
22.(1)先化简代数式,然后选取一个使原式有意义的a的值代入求值.
(2)解方程式:.
【考点】分式的化简求值;解分式方程.
【专题】计算题;分式.
【分析】(1)原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,把a=2代入计算即可求出值;
(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.
【解答】解:(1)原式=[+]?=?=,
当a=2时,原式=2;
(2)去分母得:3x=2x+3x+3,
移项合并得:2x=﹣3,
解得:x=﹣1.5,
经检验x=﹣1.5是分式方程的解.
【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.
23.在边长为1的小正方形组成的正方形网格中建立如图片所示的平面直角坐标系,已知格点三角形ABC(三角形的三个顶点都在小正方形上)
(1)画出△ABC关于直线l:x=﹣1的对称三角形△A1B1C1;并写出A1、B1、C1的坐标.
(2)在直线x=﹣l上找一点D,使BD+CD最小,满足条件的D点为(﹣1,1).
提示:直线x=﹣l是过点(﹣1,0)且垂直于x轴的直线.
【考点】作图-轴对称变换;轴对称-最短路线问题.
【分析】(1)分别作出点A、B、C关于直线l:x=﹣1的对称的点,然后顺次连接,并写出A1、B1、C1的坐标;
(2)作出点B关于x=﹣1对称的点B1,连接CB1,与x=﹣1的交点即为点D,此时BD+CD最小,写出点D的坐标.
【解答】解:(1)所作图形如图所示:
A1(3,1),B1(0,0),C1(1,3);
(2)作出点B关于x=﹣1对称的点B1,
连接CB1,与x=﹣1的交点即为点D,
此时BD+CD最小,
点D坐标为(﹣1,1).
故答案为:(﹣1,1).
【点评】本题考查了根据轴对称变换作图,解答本题的关键是根据网格结构作出对应点的位置,并顺次连接.
24.如图,已知:AD平分∠CAE,AD∥BC.
(1)求证:△ABC是等腰三角形.
(2)当∠CAE等于多少度时△ABC是等边三角形?证明你的结论.
【考点】等腰三角形的判定;等边三角形的判定.
【分析】(1)根据角平分线的定义可得∠EAD=∠CAD,再根据平行线的性质可得∠EAD=∠B,∠CAD=∠C,然后求出∠B=∠C,再根据等角对等边即可得证.
(2)根据角平分线的定义可得∠EAD=∠CAD=60°,再根据平行线的性质可得∠EAD=∠B=60°,∠CAD=∠C=60°,然后求出∠B=∠C=60°,即可证得△ABC是等边三角形.
【解答】(1)证明:∵AD平分∠CAE,
∴∠EAD=∠CAD,
∵AD∥BC,
∴∠EAD=∠B,∠CAD=∠C,
∴∠B=∠C,
∴AB=AC.
故△ABC是等腰三角形.
(2)解:当∠CAE=120°时△ABC是等边三角形.
∵∠CAE=120°,AD平分∠CAE,
∴∠EAD=∠CAD=60°,
∵AD∥BC,
∴∠EAD=∠B=60°,∠CAD=∠C=60°,
∴∠B=∠C=60°,
∴△ABC是等边三角形.
【点评】本题考查了等腰三角形的判定,角平分线的定义,平行线的性质,比较简单熟记性质是解题的关键.
25.某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需要的时间与原计划生产450台机器所需要的时间相同,现在平均每天生产多少台机器?
【考点】分式方程的应用.
【专题】应用题.
【分析】本题考查列分式方程解实际问题的能力,因为现在生产600台机器的时间与原计划生产450台机器的时间相同.所以可得等量关系为:现在生产600台机器时间=原计划生产450台时间.
【解答】解:设:现在平均每天生产x台机器,则原计划可生产(x﹣50)台.
依题意得:.
解得:x=200.
检验:当x=200时,x(x﹣50)≠0.
∴x=200是原分式方程的解.
答:现在平均每天生产200台机器.
【点评】列分式方程解应用题与所有列方程解应用题一样,重点在于准确地找出相等关系,这是列方程的依据.而难点则在于对题目已知条件的分析,也就是审题,一般来说应用题中的条件有两种,一种是显性的,直接在题目中明确给出,而另一种是隐性的,是以题目的隐含条件给出.本题中“现在平均每天比原计划多生产50台机器”就是一个隐含条件,注意挖掘.
26.如图,△ACB和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,点C、D、E三点在同一直线上,连结BD.求证:
(1)BD=CE;
(2)BD⊥CE.
【考点】全等三角形的判定与性质;等腰直角三角形.
【专题】证明题.
【分析】(1)由条件证明△BAD≌△CAE,就可以得到结论;
(2)根据全等三角形的性质得出∠ABD=∠ACE.根据三角形内角和定理求出∠ACE+∠DFC=90°,求出∠FDC=90°即可.
【解答】证明:(1)∵△ACB和△ADE都是等腰直角三角形,
∴AE=AD,AB=AC,∠BAC=∠DAE=90°,
∴∠BAC+∠CAD=∠EAD+∠CAD,
即∠BAD=∠CAE,
在△BAD和△CAE中,
,
∴△BAD≌△CAE(SAS),
∴BD=CE;
(2)如图,
∵△BAD≌△CAE,
∴∠ABD=∠ACE,
∵∠CAB=90°,
∴∠ABD+∠AFB=90°,
∴∠ACE+∠AFB=90°,
∵∠DFC=∠AFB,
∴∠ACE+∠DFC=90°,
∴∠FDC=90°,
∴BD⊥CE.
【点评】本题考查了全等三角形的判定及性质的运用,垂直的判定及性质的运用,等腰直角三角形的性质的运用,勾股定理的运用,解答时运用全等三角形的性质求解是关键.
初二数学试卷及答案解析相关文章:
★初二数学期末考试试卷分析
★八年级下册数学测试卷及答案解析
★八年级下册数学试卷及答案
★八年级下数学测试卷及答案分析
★八年级数学月考试卷分析
★八年级上册数学考试试卷及参考答案
★八年级上册数学期末考试试卷及答案
★八年级下册期末数学试题附答案
★八年级数学试卷质量分析
★八年级下册数学练习题及答案
八年级下学期期末考试数学试卷
一、选择题(每小题3分,共36分)
1.在式子 中,分式的个数为()
A.2个B.3个C.4个D.5个
2.下列运算正确的是()岁缺
A. B. C. D.
3.若A( ,b)、B( -1,c)是函数 的图象上的两点,且 <0,则b与c的大小关系为()
A.b<cB.b>cC.b=cD.无法判断
4.如图,已知点A是函数y=x与y= 的图象在第一象限内的交点,点B在x轴负半轴上,且OA=OB,则△AOB的面积为()
A.2 B. C.2 D.4
第4题图第5题图第8题图第10题图
5.如图,在三角形纸片ABC中,AC=6,∠A=30º,∠C=90º,将∠A沿DE折叠,使点A与点B重合,则折痕DE的长为()
A.1B.C. D.2
6.△ABC的三边长分别为 、b、c,下列条件:①∠A=∠B-∠C;②∠A:∠B:∠C=3:4:5;③ ;④ ,其中能判断△ABC是直角三角形的个数有()
A.1个 B.2个 C.3个 D.4个
7.一个四边形,对于下列条件:①一组对边平行早雀培,一组对角相等;②一组对边平行,一条对角线被另一条对角线平分;③一组对边相等,一条对角线被另一条对角线平分;④两组对角的平分线分别平行,不能判定为平行四边形的是()
A.①B.② C.③D.④
8.如图,已知E是菱形ABCD的边BC上一点,且∠DAE=∠B=80º,那么∠CDE的度数为()
A.20º B.25ºC.30º D.35º
9.某班抽取6名同学进行体育达标测试,成绩如下:80,90,75,80,75,80. 下列关于对这组数据的描述错误的是()
A.众数是80 B.平均数是80C.中位数陆唯是75D.极差是15
10.某居民小区本月1日至6日每天的用水量如图所示,那么这6天的平均用水量是()
A.33吨 B.32吨C.31吨D.30吨
11.如图,直线y=kx(k>0)与双曲线y= 交于A、B两点,BC⊥x轴于C,连接AC交y轴于D,下列结论:①A、B关于原点对称;②△ABC的面积为定值;③D是AC的中点;④S△AOD= . 其中正确结论的个数为()
A.1个B.2个 C.3个 D.4个
第11题图第12题图 第16题图第18题图
12.如图,在梯形ABCD中,∠ABC=90º,AE‖CD交BC于E,O是AC的中点,AB= ,AD=2,BC=3,下列结论:①∠CAE=30º;②AC=2AB;③S△ADC=2S△ABE;④BO⊥CD,其中正确的是()
A.①②③B.②③④C.①③④D.①②③④
二、填空题(每小题3分,共18分)
13. 已知一组数据10,10,x,8的众数与它的平均数相等,则这组数的中位数是.
14.观察式子: ,- , ,- ,……,根据你发现的规律知,第8个式子为.
15.已知梯形的中位线长10cm,它被一条对角线分成两段,这两段的差为4cm,则梯形的两底长分别为 .
16直线y=-x+b与双曲线y=- (x<0)交于点A,与x轴交于点B,则OA2-OB2= .
17. 请选择一组 的值,写出一个关于 的形如 的分式方程,使它的解是 ,这样的分式方程可以是______________.
18.已知直角坐标系中,四边形OABC是矩形,点A(10,0),点C(0,4),点D是OA的中点,点P是BC边上的一个动点,当△POD是等腰三角形时,点P的坐标为_________.
三、解答题(共6题,共46分)
19.( 6分)解方程:
20. (7分) 先化简,再求值: ,其中 .
21.(7分)如图,已知一次函数y=k1x+b的图象与反比例函数y= 的图象交于A(1,-3),B(3,m)两点,连接OA、OB.
(1)求两个函数的解析式;(2)求△AOB的面积.
22.(8分)小军八年级上学期的数学成绩如下表所示:
测验
类别 平 时 期中
考试 期末
考试
测验1 测验2 测验3 测验4
成绩 110 105 95 110 108 112
(1)计算小军上学期平时的平均成绩;
(2)如果学期总评成绩按扇形图所示的权重计算,问小军上学期的总评成绩是多少分?
23.(8分)如图,以△ABC的三边为边,在BC的同侧作三个等边△ABD、△BEC、△ACF.
(1)判断四边形ADEF的形状,并证明你的结论;
(2)当△ABC满足什么条件时,四边形ADEF是菱形?是矩形?
24.(10分)为预防甲型H1N1流感,某校对教室喷洒药物进行消毒.已知喷洒药物时每立方米空气中的含药量y(毫克)与时间x(分钟)成正比,药物喷洒完后,y与x成反比例(如图所示).现测得10分钟喷洒完后,空气中每立方米的含药量为8毫克.
(1)求喷洒药物时和喷洒完后,y关于x的函数关系式;
(2)若空气中每立方米的含药量低于2毫克学生方可进教室,问消毒开始后至少要经过多少分钟,学生才能回到教室?
(3)如果空气中每立方米的含药量不低于4毫克,且持续时间不低于10分钟时,才能杀灭流感病毒,那么此次消毒是否有效?为什么?
四、探究题(本题10分)
25.如图,在等腰Rt△ABC与等腰Rt△DBE中, ∠BDE=∠ACB=90°,且BE在AB边上,取AE的中点F,CD的中点G,连结GF.
(1)FG与DC的位置关系是,FG与DC的数量关系是 ;
(2)若将△BDE绕B点逆时针旋转180°,其它条件不变,请完成下图,并判断(1)中的结论是否仍然成立? 请证明你的结论.
五、综合题(本题10分)
26.如图,直线y=x+b(b≠0)交坐标轴于A、B两点,交双曲线y= 于点D,过D作两坐标轴的垂线DC、DE,连接OD.
(1)求证:AD平分∠CDE;
(2)对任意的实数b(b≠0),求证AD•BD为定值;
(3)是否存在直线AB,使得四边形OBCD为平行四边形?若存在,求出直线的解析式;若不存在,请说明理由.
参考答案
一、选择题(每小题3分,共36分)
题号 1 2 3 4 5 6 7 8 9 10 11 12
答案 B D B C D C C C C B C D
二、填空题(每小题3分,共18分)
13.1014.-15.6cm,14cm,
16.2,17.略,18.(2,4),(2.5,4),(3,4),(8,4)
三、解答题(共6题,共46分)
19. X=-
20.原式=- ,值为-3
21.(1)y=x-4,y=- .(2)S△OAB=4
22.(1)平时平均成绩为:
(2)学期总评成绩为:105×10%+108×40%+112×50%=109.7(分)
23.(1)(略) (2)AB=AC时为菱形,∠BAC=150º时为矩形.
24.(1)y= (0<x≤10),y= . (2)40分钟
(3)将y=4代入y= 中,得x=5;代入y= 中,得x=20.
∵20-5=15>10. ∴消毒有效.
四、探究题(本题10分)
25.(1)FG⊥CD ,FG= CD.
(2)延长ED交AC的延长线于M,连接FC、FD、FM.
∴四边形 BCMD是矩形.
∴CM=BD.
又△ABC和△BDE都是等腰直角三角形.
∴ED=BD=CM.
∵∠E=∠A=45º
∴△AEM是等腰直角三角形.
又F是AE的中点.
∴MF⊥AE,EF=MF,∠E=∠FMC=45º.
∴△EFD≌△MFC.
∴FD=FC,∠EFD=∠MFC.
又∠EFD+∠DFM=90º
∴∠MFC+∠DFM=90º
即△CDF是等腰直角三角形.
又G是CD的中点.
∴FG= CD,FG⊥CD.
五、综合题(本题10分)
26.(1)证:由y=x+b得 A(b,0),B(0,-b).
∴∠DAC=∠OAB=45 º
又DC⊥x轴,DE⊥y轴 ∴∠ACD=∠CDE=90º
∴∠ADC=45º 即AD平分∠CDE.
(2)由(1)知△ACD和△BDE均为等腰直角三角形.
∴AD= CD,BD= DE.
∴AD•BD=2CD•DE=2×2=4为定值.
(3)存在直线AB,使得OBCD为平行四边形.
若OBCD为平行四边形,则AO=AC,OB=CD.
由(1)知AO=BO,AC=CD
设OB=a (a>0),∴B(0,-a),D(2a,a)
∵D在y= 上,∴2a•a=2 ∴a=±1(负数舍去)
∴B(0,-1),D(2,1).
又B在y=x+b上,∴b=-1
即存在直线AB:y=x-1,使得四边形OBCD为平行四边形.
没有图片的可以另外发给你
数学如何不经常的练习以及活动大脑思维的话,那学习起来会非常的困难,下面是我给大家带来的八年级下册期末数学试题,希望能够帮助到大家!
八年级下册期末数学试题(附答案)
(满分:150分,时间:120分钟)
一、选择题(每小题3分,共24分)每题有且只有一个答案正确,请把你认为正确的答案前面的字母填入答题卡相应的空格内.
1.不等式 的解集是( )
A B C D
2.如果把分式 中的x和y都扩大2倍,那么分式的值( )
A 扩大2倍 B 不变 C 缩小2倍 D 扩大4倍
3. 若反比例函数图像经过点 ,则此函数图像也经过的点是( )
A B C D
4.在 和 中, ,如果 的周长是16,面积是12,那么 的周长、面积依次为( )
A 8,3 B 8,6 C 4,3 D 4,6
5. 下列命题中的假命题是( )
A 互余两角的和 是90° B 全等三角形的面积相等
C 相等的角是对顶角 D 两直线平行,同旁内角互补
6. 有一把钥匙藏在如图所示的16块正方形瓷砖的某一块下面,
则钥匙藏在黑色瓷砖下面的概率是( )
A BC D
7.为抢修一段120米的铁路,施工队每天比原计划多修5米,结果提前4天开通了列车,问原计划每天修多少米?若设原计划每天修x米,则所列方程正确的是 ( )
A B C D
8.如图,在直角梯形ABCD中,∠ABC=90°,AD∥BC,
AD=4,AB=5,BC=6,点P是AB上一个动点,
当PC+PD的和最小时,PB的长为 ( )
A 1 B 2 C 2.5 D 3
二、填空题(每小题3分,共30分)将答案填写在答题卡相应的横线上.
9、函数y= 中, 自变量 的取值范围是 .
10.在比例尺为1∶500000的中国地图上,量得江都市与扬州市相距4厘米,那么江都市与扬州市两地的实际相距 千米.
11.如图1, , ,垂足为 .若 ,则 度.
12.如图2, 是 的 边上一点,请你添加一个条件: ,使 .
13.写出命题“平行四边形的对角线互相平分”的逆命题: _______________
__________________________________________________________.
14.已知 、 、 三条线段,其中 ,若线段 是线段 、 的比例中项,弊键
则 = .
15. 若不等式组 的解集是 ,则 .
16. 如果分式方程 无解,则m= .
17. 在函数 ( 为常数)的图象上有三个点(-2, ),(-1, ),( , ),函数值 , , 的大小为 .
18.如图,已知梯形ABCO的底边AO在 轴上,BC∥AO,AB⊥AO,过点C的双曲线 交OB于D,且 ,若△OBC的面积等于3,则k的值为 .
三、解答题(本大题10小题,共96分)解答应写出文字说明租哗巧、证明过程或演算步骤.
19.(8分)解不 等式组 ,并把解集芦搜在数轴上表示出来.
20.(8分)解方程:
21.(8分)先化简,再求值: ,其中 .
22.(8分) 如图,在正方形网格中,△OBC的顶点分别为O(0,0), B(3,-1)、C(2,1).
(1)以点O(0,0)为位似中心,按比例尺2:1在位似中心的异侧将△OBC放大为△OB′C′ ,放大后点B、C两点的对应点分别为B′、C′ ,画出△OB′C′,并写出点B′、C′的坐标:B′( , ),C′( , );
(2)在(1)中,若点M(x,y)为线段BC上任一点,写出变化后点M的对应点M′的坐标( , ).
23.(10分)如图,已知:点B、F、C、E在一条直线上,FB=CE,AC=DF.
能否由上面的已知条件证明AB∥ED?如果能,请给出证明;如果不能,请从下列三个条件中选择一个合适的条件,添加到已知条件中,使AB∥ED成立,并给出证明.
供选择的三个条件(请从其中选择一个):
①AB=ED;
②BC=EF;
③∠ACB=∠DFE.
24.(10分)有A、B两个黑布袋,A布袋中有两个完全相同的小球,分别标有数字1和2.B布袋中有三个完全相同的小球,分别标有数字 , 和-4.小明从A布袋中随机取出一个小球,记录其标有的数字为x,再从B布袋中随机取出一个小球,记录其标有的数字为y,这样就确定点Q的一个坐标为(x,y).
(1)用列表或画树状图的方法写出点Q的所有可能坐标;
(2)求点Q落在直线y= 上的概率.
25.(10分)如图,已知反比例函数 和一次函数 的图象相交于第一象限内的点A,且点A的横坐 标为1. 过点A作AB⊥x轴于点B,△AOB的面积为1.
(1)求反比例函数和一次函数的解析式;
(2)若一次函数 的图象与x轴相交于点C,求∠ACO的度数;
(3)结合图象直接写出:当 > >0 时,x的取值范围.
26.(10分)小明想利用太阳光测量楼高,他带着皮尺来到一栋楼下,发现对面墙上有这栋楼的影子,针对这种情况,他设计了一种测量方案,具体测量情况如下:
如示意图,小明边移动边观察,发现站到点E处时,可以使自己落在墙上的影子与这栋楼落在墙上的影子重叠,且高度恰好相同.此时,测得小明落在墙上的影子高度CD= ,CE= ,CA= (点A、E、C在同一直线上).
已知小明的身高EF是 ,请你帮小明求出楼高AB.
27.(12分)某公司为了开发新产品,用A、B两种原料各360千克、290千克,试制甲、乙两种新型产品共50件,下表是试验每件新产品所需原料的相关数据:
A(单位:千克) B(单位:千克)
甲 9 3
乙 4 10
(1)设生产甲种产品x件,根据题意列出不等式组,求出x的取值范围;
(2)若甲种产品每件成本为70元,乙种产品每件成本为90元,设两种产品的成本总额为y元,求出成本总额y(元) 与甲种产品件数x(件)之间的函数关系式;当甲、乙两种产品各生产多少件时,产品的成本总额最少?并求 出最少的成本总额.
28.(12分)如图1,在同一平面内,将两个全等的等腰直角三角形ABC和AFG摆 放在一起,A为公共顶点,∠BAC=∠AGF=90°,它们的斜边长为 ,若∆ABC固定不动,∆AFG绕点A旋转,AF、AG与边BC的交点分别为D、E(点D不与点B重合,点E不与点C重合),设BE=m,CD=n
(1)请在图1中找出两对相似而不全等的三角形,并选取其中一对证明它们相似 ;
(2)根据图1,求m与n的函数关系式,直接写出自变量n的取值范围;
(3)以∆ABC的斜边BC所在的直线为x轴,BC边上的高所在的直线为y轴,建立平面直角坐标系(如图2). 旋转∆AFG,使得BD=CE,求出D点的坐标,并通过计算验证 ;
(4)在旋转过程中,(3)中的等量关系 是否始终成立,若成立,请证明,若不成立,请说明理由.
八年级数学参考答案
一、选择题(本大题共8小题,每小题3分,共24分)
题号 1 2 3 4 5 6 7 8
答案 D B D A C C A D
二、填空题(本大题共10小题,每题3分,共30分)
9、x≠1 10、20 11、40 12、 或 或
13、对角线互相平分的四边形是平行四边形。 14、4 15、-1
16、-1 17、 18、
三、解答题:(本大题有8题,共96分)
19、解:解不等式①,得 . …………………………………… 2分
解不等式②,得 . …………………………………… 4分
原不等式组的解集为 . ………………………………… 6分
在数轴上表示如下:略 …………………………………… 8分
20、解: 方程两边同乘 得 …………4分
解得 …………7分
经检验 是原方程的根 …………8分
21.解:原式= 2分
= 4分
= 6分
当 时,上式=-2 8分
22.(1)图略(2分), B’( -6 , 2 ),C’( -4 , -2 ) 6分
(2)M′( -2x,-2y ) 8分
23.解:由上面两条件不能证明AB//ED. ……………………………………… 1分
有两种添加方法.
第一种:FB=CE,AC=DF添加 ①AB=ED ………………………………………… 3分
证明:因为FB=CE,所以BC=EF,又AC=EF,AB=ED,所以△ABC≌△DEF
所以∠ABC=∠DEF 所以AB//ED …………………………………………… 10分
第二种:FB=CE,AC=DF添加 ③∠ACB=∠DFE ……………………… 3分
证明:因为FB=CE,所以BC=EF,又∠ACB=∠DFE AC=EF,所以△ABC≌△DEF
所以∠ABC=∠DEF 所以AB//ED ………………………………………………… 10分
24.解(1)
B
A -2 -3 -4
1 (1,-2) (1,-3) (1,-4)
2 (2,-2) (2,-3) (2,-4)
(两图选其一)
……………4分(对1个得1′;对2个或3个,得2′;对4个或5个得3′;全对得4′)
(2)落在直线y= 上的点Q有:(1,-3);(2,-4) 8分
∴P= = 10分
25.(1)y = , y = x + 1 4分( 答对一个解析式得2分)
(2)45 7分
(3)x>1 10分
26.解:过点D作DG⊥AB,分别交AB、EF于点G、H,
则EH=AG=CD=1,DH=CE=0.8,DG=CA=40,
∵EF∥AB,
∴ ,
由题意,知FH=EF-EH=1.6-1=0.6,
∴ ,
解得 BG=30,…………………………………………8分
∴AB=BG+AG=30+1=31.
∴楼高AB为31米.…………………………………………10分
27.解:(1)由题意得 3分
解不等式组得 6分
(2) 8分
∵ ,∴ 。
∵ ,且x为整数,
∴当x=32时, 11分
此时50-x=18,生产甲种产品32件,乙种产品18件。 12分
28、解:(1)∆ABE∽∆DAE, ∆ABE∽∆DCA 1分
∵∠BAE=∠BAD+45°,∠CDA=∠BAD+45°∴∠BAE=∠CDA 又∠B=∠C=45°
∴∆ABE∽∆DCA 3分
(2)∵∆ABE∽∆DCA ∴ 由依题意可知
∴ 5分
自变量n的取值范围为 6分
(3)由BD=CE可得BE=CD,即m=n ∵ ∴ ∵OB=OC= BC= 8分
9分
(4)成立 10分
证明:如图,将∆ACE绕点A顺时针旋转90°至∆ABH的位置,则CE=HB,AE=AH,
∠ABH=∠C=45°,旋转角∠EAH=90°. 连接HD,在∆EAD和∆HAD中
∵AE=AH, ∠HAD=∠EAH-∠FAG=45°=∠EAD, AD=AD.∴∆EAD≌∆HAD
∴DH=DE 又∠HBD=∠ABH+∠ABD=90°
∴BD +HB =DH 即BD +CE =DE 12分
1. 八年级下册数学试卷及答案
2. 八年级下册数学练习题及答案
3. 中学数学八年级下册数学谜语
4. 八年级下册数学作业本答案参考
5. 人教版小学数学四年级下册期末测试附答案